Answer: through energy carriers, ATP and NADPH
Explanation:in the light dependent stage,energy from a light photon is used to create ATP through ADP and an inorganic phosphate.
It does this by the transfer of energetic electron from one electron carrier to another.NADPH is also formed.
In the light independent reaction,ATP and NADP are used to reduce carbon dioxide to 3-phosphoglycerate
Answer:
Both of them are related most of the structures of human body .The working of cells, the cellular respiration processes ,the proteins synthesizing carbohydrates syntheses lipids synthesis and many other reactions involves chemistry.
•Chemistry and biology both are branches of science so they are much more related to each other.
Explanation:
<h2>I hope it's helpful for you</h2>
Answer:
The answer is 3
C2H5OH + O2 CO2 +H2O (unbalanced)
C2H5OH +3O2(g). 2CO2(g)+3H2O(balanced)
Answer:
In 1889, Ernest Rutherford recognized and named two modes of radioactive decay, showing the occurrence of both processes in a decaying sample of natural uranium and its daughters. Rutherford named these types of radiation based on their penetrating power: heavier alpha and lighter beta radiation. Gamma rays, a third type of radiation, were discovered by P. Villard in 1900 but weren't recognized as electromagnetic radiation until 1914. Since gamma radiation is only the discharge of a high-energy photon from an over-excited nucleus, it does not change the identity of the atom from which it originates and therefore will not be discussed in depth here.
Because nuclear reactions involve the breaking of very powerful intra nuclear bonds, massive amounts of energy can be released. At such high energy levels, the matter can be converted directly to energy according to Einstein's famous Mass-Energy relationship E = mc2. The sum of mass and energy are conserved in nuclear decay. The free energy of any spontaneous reaction must be negative according to thermodynamics (ΔG < 0), and ΔG is essentially equal to the energy change ΔE of nuclear reactions because ΔE is so massive.
Explanation:
Hope it helps