Answer: ![2x^{2} y^{3} (\sqrt[3]{4x^{2} y} )](https://tex.z-dn.net/?f=2x%5E%7B2%7D%20y%5E%7B3%7D%20%28%5Csqrt%5B3%5D%7B4x%5E%7B2%7D%20y%7D%20%29)
Step-by-step explanation:
![\sqrt[3]{32x^{8} y^{10} } =\sqrt[3]{2^{3} \cdot 2^{2} \cdot x^{2} \cdot (x^{2} )^{3} \cdot y \cdot (y^{3})^{3} } =2x^{2} y^{3} (\sqrt[3]{4x^{2} y} )](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B32x%5E%7B8%7D%20y%5E%7B10%7D%20%7D%20%3D%5Csqrt%5B3%5D%7B2%5E%7B3%7D%20%5Ccdot%202%5E%7B2%7D%20%20%5Ccdot%20x%5E%7B2%7D%20%5Ccdot%20%28x%5E%7B2%7D%20%29%5E%7B3%7D%20%5Ccdot%20y%20%5Ccdot%20%28y%5E%7B3%7D%29%5E%7B3%7D%20%20%7D%20%3D2x%5E%7B2%7D%20y%5E%7B3%7D%20%28%5Csqrt%5B3%5D%7B4x%5E%7B2%7D%20y%7D%20%29)
Answer:
[ See the attached picture ]
The diagonals of a parallelogram bisect each other.
✧ Given : ABCD is a parallelogram. Diagonals AC and BD intersect at O.
✺ To prove : AC and BD bisect each other at O , i.e AO = OC and BO = OD.
Proof :
♕ And we're done! Hurrayyy! ;)
# STUDY HARD! So, Tomorrow you can answer people like this , " Dude , I just bought this expensive mobile phone but it is not that expensive for me" [ - Unknown ] :P
☄ Hope I helped! ♡
☃ Let me know if you have any questions! ♪
☂
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938 etc.
Well metric unit is for measurement and place value units is for numbers
Answer:

<h3><u>(20+15x)</u> is the right answer.</h3>