Answer:
21
Step-by-step explanation:
When you subtract the length of the base from the length of the side, you get
(ax+9) - (4x+b) = (a-4)x +(9-b)
The answer is isosceles triangle
Answer:
method 2 use the radians sector area formula
<u>Given</u>:
Given that JKL is a right triangle.
The measure of ∠L is 90°
The length of JL = 24, LK = 7, and KJ = 25.
We need to determine the value of sine of ∠K.
<u>Value of sin ∠K:</u>
The value of sin ∠K can be determine using the trigonometric ratio.
Thus, we have;
![sin \ \theta=\frac{opp}{hyp}](https://tex.z-dn.net/?f=sin%20%5C%20%5Ctheta%3D%5Cfrac%7Bopp%7D%7Bhyp%7D)
Substituting
, the side opposite to angle K is JL and the hypotenuse is JK
Thus, we have;
![sin \ K=\frac{JL}{JK}](https://tex.z-dn.net/?f=sin%20%5C%20K%3D%5Cfrac%7BJL%7D%7BJK%7D)
Substituting JL = 24 and JK = 25, we get;
![sin \ K=\frac{24}{25}](https://tex.z-dn.net/?f=sin%20%5C%20K%3D%5Cfrac%7B24%7D%7B25%7D)
Simplifying, we get;
![sin \ K=0.96](https://tex.z-dn.net/?f=sin%20%5C%20K%3D0.96)
![K=sin^{-1}(0.96)](https://tex.z-dn.net/?f=K%3Dsin%5E%7B-1%7D%280.96%29)
![K=73.74^{\circ}](https://tex.z-dn.net/?f=K%3D73.74%5E%7B%5Ccirc%7D)
Thus, the measure of sine of ∠K is 73.74°