Simplify:
<span>1. Write the prime factorization of the radicand.</span> <span>2. Apply the product property of square roots. Write the radicand as a product, forming as many perfect square roots as possible. </span>
3. Simplify.
=the answer is 18
Answer:
<h3>x=47</h3>
Step-by-step explanation:
To solve this problem, first, you have to isolate x on one side of the equation. Isolate it on one side of the equation.
2x-2=x+45
2x-2+2=x+45+2 (First, add 2 from both sides.)
45+2 (Solve.)
45+2=47
2x=x+47
2x-x=x+47-x (Then, subtract x from both sides.)
47-x (Solve.)
47-x=47
x=47
In conclusion, the final answer is x=47.
Step-by-step explanation:
- 4 × (1/7) Less Than
- 12 × 2(5/6) Greater Than
<em>The Rule: </em><em>If</em><em> </em><em>you</em><em> </em><em>are</em><em> </em><em>multiplying</em><em> </em><em>by</em><em> </em><em>a</em><em> </em><em>value</em><em> </em><em>less</em><em> </em><em>than</em><em> </em><em>one</em><em>,</em><em> </em><em>your</em><em> </em><em>product</em><em> </em><em>will</em><em> </em><em>decrease</em><em>.</em><em> </em><em>If</em><em> </em><em>you</em><em> </em><em>are</em><em> </em><em>multiplying</em><em> </em><em>by</em><em> </em><em>1</em><em>,</em><em> </em><em>the</em><em> </em><em>product</em><em> </em><em>will</em><em> </em><em>be</em><em> </em><em>equal</em><em> </em><em>and</em><em> </em><em>if</em><em> </em><em>you</em><em> </em><em>are</em><em> </em><em>multiplying</em><em> </em><em>by</em><em> </em><em>a</em><em> </em><em>value</em><em> </em><em>greater</em><em> </em><em>than</em><em> </em><em>1</em><em>,</em><em> </em><em>the</em><em> </em><em>product</em><em> </em><em>will</em><em> </em><em>increase</em><em>.</em>
Answer:
x=2, x=1
Step-by-step explanation:
Multiply both sides by x, so you get (x^2)+2=3x, which comes from 
Solve for (x^2)+2=3x
(x^2)-3x+2=0
(x-2)(x-1)=0, use box method or FOIL if needed
x=2,x=1
Answer:
1) commutative property of addition
2)associative property of addition
3) commutative property
Step-by-step explanation:
1) You switched the numbers in the parenthesis, which in this case is 3 and 4.
2) You just moved the parenthesis which in this case is (1+2) to (2+3)
3) You switched the numbers in the equation