Answer:
Nonmetal + Nonmetal —> covalent compound (usually)
Explanation:
Covalent compounds are formed when two nonmetals react with each other.
<u>Answer:</u> The mass defect for the formation of phosphorus-31 is 0.27399
<u>Explanation:</u>
Mass defect is defined as the difference in the mass of an isotope and its mass number.
The equation used to calculate mass defect follows:
![\Delta m=[(n_p\times m_p)+(n_n\times m_n)]-M](https://tex.z-dn.net/?f=%5CDelta%20m%3D%5B%28n_p%5Ctimes%20m_p%29%2B%28n_n%5Ctimes%20m_n%29%5D-M)
where,
= number of protons
= mass of one proton
= number of neutrons
= mass of one neutron
M = mass number of element
We are given:
An isotope of phosphorus which is 
Number of protons = atomic number = 15
Number of neutrons = Mass number - atomic number = 31 - 15 = 16
Mass of proton = 1.00728 amu
Mass of neutron = 1.00866 amu
Mass number of phosphorus = 30.973765 amu
Putting values in above equation, we get:
![\Delta m=[(15\times 1.00728)+(16\times 1.00866)]-30.973765\\\\\Delta m=0.27399](https://tex.z-dn.net/?f=%5CDelta%20m%3D%5B%2815%5Ctimes%201.00728%29%2B%2816%5Ctimes%201.00866%29%5D-30.973765%5C%5C%5C%5C%5CDelta%20m%3D0.27399)
Hence, the mass defect for the formation of phosphorus-31 is 0.27399
Calculating for the moles of H+
1.0 L x (1.00 mole / 1 L ) = 1 mole H+
From the given balanced equation, we can use the stoichiometric ratio to solve for the moles of PbCO3:
1 mole H+ x (1 mole PbCO3 / 2 moles H+) = 0.5 moles PbCO3
Converting the moles of PbCO3 to grams using the molecular weight of PbCO3
0.5 moles PbCO3 x (267 g PbCO3 / 1 mole PbCO3) = 84.5 g PbCO3
Answer:
American Holly, Black Pine, Blue Pacific Juniper, Blue Dune Grass, Artemesia) MODERATELY SALT TOLERANT: plants always need protection from salt spray but will tolerate some inundations by storm surges. They are best used behind fences or buildings. (
There are 66 neutrons in a single atom of indium-115. The atomic number of indium-115 is 49, meaning there are 49 protons. Then the atomic mass is 115, so 115-49 = 66.