Answer: 20.7 kJ
Explanation:
According to first law of thermodynamics:
=Change in internal energy
q = heat absorbed or released
w = work done or by the system
w = work done on the system=
{Work is done on the system is positive as the final volume is lesser than initial volume}
w = 4.51 kcal =
(1kcal = 4.184kJ)
q = +1.79 kJ {Heat absorbed by the system is positive}

Thus
for a system that receives 1.79 kJ of heat from surroundings and has 4.51 kcal of work done on it at the same time is 20.7 kJ
I believe the balanced chemical equation is:
C6H12O6 (aq) + 6O2(g)
------> 6CO2(g) + 6H2O(l)
First calculate the
moles of CO2 produced:
moles CO2 = 25.5 g
C6H12O6 * (1 mol C6H12O6 / 180.15 g) * (6 mol CO2 / 1 mol C6H12O6)
moles CO2 = 0.8493 mol
Using PV = nRT from
the ideal gas law:
<span>V = nRT / P</span>
V = 0.8493 mol *
0.08205746 L atm / mol K * (37 + 273.15 K) / 0.970 atm
<span>V = 22.28 L</span>
Answer:
2Li + F₂ → 2LiF
Explanation:
The reaction expression is given as:
Li + F₂ → LiF
We are to balance the expression. In that case, the number of atoms on both sides of the expression must be the same.
Let use a mathematical approach to solve this problem;
Assign variables a,b and c as the coefficients that will balance the expression:
aLi + bF₂ → cLiF
Conserving Li: a = c
F: 2b = c
let a = 1, c = 1 and b =
Multiply through by 2;
a = 2, b = 1 and c = 2
2Li + F₂ → 2LiF
In every reaction, mass cannot be destroyed nor created as defined by the law of conservation of mass. Energy also cannot be destroyed when a chemical reaction takes place
True. Mitosis is a part of the call cycle when replicated chromosomes are separated into new nuclei. It is a for if eukaryotic cell division that produces two daughter cells with the same genetic components as the parent cells.