Hi,
Work:
Equation;

First add up numbers and distribute 9 over parenthesis.

Second: collect like terms.

Move variable 59p to left side and change its sign.

Then move constant 123 to right side and change its sign.

Calculate the difference.

Divide both sides of equation by 59.

Hope this helps.
r3t40
The sum is 829.77, and the difference is 205.44
x+y=8 and 25x+10y=170 are the linear equations.
x+y≤8 and 25x+10y≤170 are the inequalities.
Step-by-step explanation:
Given,
Worth of coins = $1.70 = 1.70*100 = 170 cents
Number of coins = 8
1 quarter = 25 cents
1 dime = 10 cents
Let,
x represent the number of quarters
y represent the number of dimes
1. Write an equation to represent the amount of coins Karen has.
x+y = 8
2.Write an equation to represent the value of the coins Karen has.
25x+10y=170
x+y=8 and 25x+10y=170 are the linear equations.
For inequalities, the amount cannot increase number of coins and worth but it can be less, therefore,
x+y≤8
25x+10y≤170
x+y≤8 and 25x+10y≤170 are the inequalities.
Keywords: linear equations, addition
Learn more about linear equations at:
#LearnwithBrainly
Answer:
D- The blackcaps will begin nesting at their wintering sites in Spain or the United Kingdom, resulting in a larger blackcap population migrating back to Germany after the breeding season has ended.
Step-by-step explanation:
By the inhabitants of Spain and the United Kingdom placing feeders out for the blackcaps, the birds in their nesting sites during the winter will have food to eat, meaning a bigger population of the Blackcaps when they return to their main home in Germany.
This best predicts the effect on the blackcap population if humans in the United Kingdom continue to place food in feeders during the winter.