His model was also called the Planetary model
Answer:
<h2>Part A)</h2><h2>Acceleration of the ball is 10.1 m/s/s</h2><h2>Part B)</h2><h2>the final speed of the ball is given as</h2><h2>

</h2>
Explanation:
Part a)
As we know that drag force is given as






so we have


So acceleration of the ball is



Part B)
As per kinematics we know that



Answer:
t = 0.029s
Explanation:
In order to calculate the interaction time at the moment of catching the ball, you take into account that the force exerted on an object is also given by the change, on time, of its linear momentum:
(1)
m: mass of the water balloon = 1.20kg
Δv: change in the speed of the balloon = v2 - v1
v2: final speed = 0m/s (the balloon stops in my hands)
v1: initial speed = 13.0m/s
Δt: interaction time = ?
The water balloon brakes if the force is more than 530N. You solve the equation (1) for Δt and replace the values of the other parameters:

The interaction time to avoid that the water balloon breaks is 0.029s
Im pretty sure its the first option
Geostrophic winds blows parallel to the isobars. That is because the Coriolis force and pressure gradient force ( PGF ) are in balance. But near the surface the friction can act to change the direction of the wind and to slow it down. Coriolis force decreases at the surface and PGF stays the same. The difference in terrain conditions affects how much friction is exerted. Hills and forests force the wind to change direction more than flat areas. Answer: Friction reduces the speed so Coriolis is weakened.