Answer:

Explanation:
given,
length of ladder = 10 ft
let x be the distance of the bottom and y be the distance of the top of ladder.
x² + y² = 100
differentiating with respect to time we get
..............(1)
when x = 8 and y = 6 and when \dfrac{dx}{dt} = 1.4ft/s
from equation (1)
now,


let the angle between the ladders be θ

y = xtan θ




Acceleration is the speed of an object speeding up
Whether it is velocity or just speed
The answer is TRUE, batteries CAN supply a steady flow of electrons.
Answer:
34 m/s
Explanation:
Potential energy at top = kinetic energy at bottom + work done by friction
PE = KE + W
mgh = ½ mv² + Fd
mg (d sin θ) = ½ mv² + Fd
Solving for v:
½ mv² = mg (d sin θ) − Fd
mv² = 2mg (d sin θ) − 2Fd
v² = 2g (d sin θ) − 2Fd/m
v = √(2g (d sin θ) − 2Fd/m)
Given g = 9.8 m/s², d = 150 m, θ = 28°, F = 50 N, and m = 65 kg:
v = √(2 (9.8 m/s²) (150 m sin 28°) − 2 (50 N) (150 m) / (65 kg))
v = 33.9 m/s
Rounded to two significant figures, her velocity at the bottom of the hill is 34 m/s.