We can calculate the acceleration of Cole due to friction using Newton's second law of motion:

where

is the frictional force (with a negative sign, since the force acts against the direction of motion) and m=100 kg is the mass of Cole and the sled. By rearranging the equation, we find

Now we can use the following formula to calculate the distance covered by Cole and the sled before stopping:

where

is the final speed of the sled

is the initial speed

is the distance covered
By rearranging the equation, we find d:
Answer:

Explanation:
Given that:
- mass of meteoroid,

- radial distance from the center of the planet,

- mass of the planet,

<u>For gravitational potential energy we have:</u>

substituting the respective values:


Answer:
120 kg m/s
Explanation:
The magnitude of the momentum of an object is given by

where
m is the mass of the object
v is its speed
For the block in this problem,
m = 10.0 kg (mass of the block)
v = 12.0 m/s (speed of the block)
Therefore the magnitude of the block's momentum is

Answer:
Current = dQ/dt
or I = dQ/dt
Where I represents current.
Which is the rate of flow of charge.
Q=4 + 2t + t²
dQ/dt = 2 + 2t --- This is the relation that gives the instantaneous current.
At time t=2sec
dQ/dt = I = 2 + 2t
= 2 + 2(2)
=2 + 4
= 6A.