1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga_2 [115]
3 years ago
7

Which of the following wavelengths will produce standing waves on a string that is 3.5 m long?

Physics
2 answers:
denpristay [2]3 years ago
3 0

In a string of length L, the wavelength of the n-th harmonic of the standing wave produced in the string is given by:

\lambda=\frac{2}{n} L


The length of the string in this problem is L=3.5 m, therefore the wavelength of the 1st harmonic of the standing wave is:

\lambda=\frac{2}{1} \cdot 3.5 m=7.0 m


The wavelength of the 2nd harmonic is:

\lambda=\frac{2}{2} \cdot 3.5 m=3.5 m


The wavelength of the 4th harmonic is:

\lambda=\frac{2}{4} \cdot 3.5 m=1.75 m


It is not possible to find any integer n such that \lambda=5 m, therefore the correct options are A, B and D.

kotegsom [21]3 years ago
3 0
For standing waves to be produced, 
L = nλ/2, where L is the length of the string, λ is the wavelength and n a natural number.

3.5 = nλ/2
7/λ = n

Therefore, the only answers that produce whole numbers when plugged into λ are A and B.
You might be interested in
When a rubber ball dropped from rest bounces off the floor, its direction of motion is reversed becaue
nalin [4]

Answer:In physics, energy is the quantitative property that must be transferred to an object in order to perform work on, or to heat, the object.[note 1] Energy is a conserved quantity; the law of conservation of energy states that energy can be converted in form, but not created or destroyed. The SI unit of energy is the joule, which is the energy transferred to an object by the work of moving it a distance of 1 metre against a force of 1 newton.

Common forms of energy include the kinetic energy of a moving object, the potential energy stored by an object's position in a force field (gravitational, electric or magnetic), the elastic energy stored by stretching solid objects, the chemical energy released when a fuel burns, the radiant energy carried by light, and the thermal energy due to an object's temperature.

Mass and energy are closely related. Due to mass–energy equivalence, any object that has mass when stationary (called rest mass) also has an equivalent amount of energy whose form is called rest energy, and any additional energy (of any form) acquired by the object above that rest energy will increase the object's total mass just as it increases its total energy. For example, after heating an object, its increase in energy could be measured as a small increase in mass, with a sensitive enough scale.

Living organisms require energy to stay alive, such as the energy humans get from food. Human civilization requires energy to function, which it gets from energy resources such as fossil fuels, nuclear fuel, or renewable energy. The processes of Earth's climate and ecosystem are driven by the radiant energy Earth receives from the sun and the geothermal energy contained within the earth.

Explanation:

Some forms of energy (that an object or system can have as a measurable property)

Type of energy Description

Mechanical the sum of macroscopic translational and rotational kinetic and potential energies

Electric potential energy due to or stored in electric fields

Magnetic potential energy due to or stored in magnetic fields

Gravitational potential energy due to or stored in gravitational fields

Chemical potential energy due to chemical bonds

Ionization potential energy that binds an electron to its atom or molecule

Nuclear potential energy that binds nucleons to form the atomic nucleus (and nuclear reactions)

Chromodynamic potential energy that binds quarks to form hadrons

Elastic potential energy due to the deformation of a material (or its container) exhibiting a restorative force

Mechanical wave kinetic and potential energy in an elastic material due to a propagated deformational wave

Sound wave kinetic and potential energy in a fluid due to a sound propagated wave (a particular form of mechanical wave)

Radiant potential energy stored in the fields of propagated by electromagnetic radiation, including light

Rest potential energy due to an object's rest mass

Thermal kinetic energy of the microscopic motion of particles, a form of disordered equivalent of mechanical energy

Main articles: History of energy and timeline of thermodynamics, statistical mechanics, and random processes

8 0
3 years ago
A. How will the Milky Way continue to move outward as a result of the Big Bang?
emmasim [6.3K]

Answer:

i believe it is c

Explanation:

4 0
3 years ago
Physics Homework MathPhys homie if you see this pls help
cluponka [151]

Answer:

1. -8.20 m/s²

2. 73.4 m

3. 19.4 m

Explanation:

1. Apply Newton's second law to the car in the y direction.

∑F = ma

N − mg = 0

N = mg

Apply Newton's second law to the car in the x direction.

∑F = ma

-F = ma

-Nμ = ma

-mgμ = ma

a = -gμ

Given μ = 0.837:

a = -(9.8 m/s²) (0.837)

a = -8.20 m/s²

2. Given:

v₀ = 34.7 m/s

v = 0 m/s

a = -8.20 m/s²

Find: Δx

v² = v₀² + 2aΔx

(0 m/s)² = (34.7 m/s)² + 2 (-8.20 m/s²) Δx

Δx = 73.4 m

3. Since your braking distance is the same as the car in front of you, the minimum safe following distance is the distance you travel during your reaction time.

d = v₀t

d = (34.7 m/s) (0.56 s)

d = 19.4 m

6 0
3 years ago
What do you need to make 100 minutes charges neutral
Maru [420]
Neutrons are neutral<span> and </span>do<span> not </span>have<span> any </span>charge<span> at all. Protons carry a positive </span>charge<span>, and electrons carry the negative </span><span>charge.</span>
4 0
3 years ago
What is the difference between radial acceleration and tangential acceleration and how do you calculate both of these accelerati
sergey [27]

Answer:

Tangential acceleration is in the direction of velocity - along the circumference of a circle if the object is undergoing circular motion

a = (V2 - V1) / T

Radial acceleration is perpendicular to the direction of motion if the object is not moving in a straight line (perhaps along the circumference of a circle)

a = m V^2 / R = m ω^2 R   where R is the radius vector of the velocity - note that the Radius vector is directed from the center of motion to the object and for circular motion would be constant in magnitude but not  in direction

8 0
2 years ago
Other questions:
  • A stone is thrown vertically upward with a speed of 24.0 ms. (a) How fast is it moving when it reaches a height of 13.0 m? (b) H
    13·1 answer
  • How does lithiums position in the periodic table relate to its properties
    13·1 answer
  • A 5000-kg freight car runs into a 10,000-kg freight car at rest. They couple upon collision and move with a speed of 2 m/s. What
    13·1 answer
  • The door is 3.00 m tall and 1.25 m wide, and it weighs 750 N . You can ignore the friction at the hinges. If Exena applies a for
    5·1 answer
  • In terms of their location, what is the difference between subcutaneous fat and visceral fat
    7·1 answer
  • One small thing you eat it you atomicly started crry. what is it.​
    12·1 answer
  • PLEASE HELP ME WITH THIS
    11·1 answer
  • Suppose you take a trip that covers 490 km and takes 1 hours to make. Your average speed is
    14·1 answer
  • A few alpha particles bounce off a thin sheet of gold foil. What did scientists
    7·1 answer
  • A 248 kg object moving at 19m/s comes to stop over a distance of 38 m. What is the coefficient of kinetic friction between the s
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!