Answer:
a. I = 0.76 A
b. Z = 150.74
c. RL₁ = 34.41 , RL₂ = 602.58
d. RL₂ = 602.58
Explanation:
V₁ = 116 V , R₁ = 77.0 Ω , Vc = 364 V , Rc = 473 Ω
a.
Using law of Ohm
V = I * R
I = Vc / Rc = 364 V / 473 Ω
I = 0.76 A
b.
The impedance of the circuit in this case the resistance, capacitance and inductor
V = I * Z
Z = V / I
Z = 116 v / 0.76 A
Z = 150.74
c.
The reactance of the inductor can be find using
Z² = R² + (RL² - Rc²)
Solve to RL'
RL = Rc (+ / -) √ ( Z² - R²)
RL = 473 (+ / -) √ 150.74² 77.0²
RL = 473 (+ / -) (129.58)
RL₁ = 34.41 , RL₂ = 602.58
d.
The higher value have the less angular frequency
RL₂ = 602.58
ω = 1 / √L*C
ω = 1 / √ 602.58 * 473
f = 285.02 Hz
Answer:
drawing because Fine motor skills are the ability to make movements using the small muscles in our hands and wrists.
Answer:

Explanation:
From the question we are told that:
Height
Length
Mass 
Final speed
Generally the equation for Potential Energy P.E is mathematically given by

Therefore
Initial potential energy

Generally the equation for Kinetic Energy K.E is mathematically given by

Therefore
Final kinetic energy

Generally the equation for Work_done is mathematically given by

Therefore


Answer: (Projectile motion)
Option A — At its highest point the ball’s velocity is 0 and so it it’s acceleration (0).
This is because at the highest point, the ball’s direction changes. This is due to the forces counteracting the upward momentum (mass*velocity) of the ball, so the ball slows down and when it reaches it highest point starts to change direction and fall back down. In the short period of time at which its at its highest point, it’s velocity reaches 0 for a very short amount of time, and so does its acceleration.
Answer:
Explanation:
Because friction is always present, the actual mechanical advantage of a machine is always less than the ideal mechanical advantage.