The answer is definitely c
Answer:
The probability that the aircraft is overload = 0.9999
Yes , The pilot has to be take strict action .
Step-by-step explanation:
P.S - The exact question is -
Given - Before every flight, the pilot must verify that the total weight of the load is less than the maximum allowable load for the aircraft. The aircraft can carry 37 passengers, and a flight has fuel and baggage that allows for a total passenger load of 6,216 lb. The pilot sees that the plane is full and all passengers are men. The aircraft will be overloaded if the mean weight of the passengers is greater than 6216/37 = 168 lb. Assume that weight of men are normally distributed with a mean of 182.7 lb and a standard deviation of 39.6.
To find - What is the probability that the aircraft is overloaded ?
Should the pilot take any action to correct for an overloaded aircraft ?
Proof -
Given that,
Mean, μ = 182.7
Standard Deviation, σ = 39.6
Now,
Let X be the Weight of the men
Now,
Probability that the aircraft is loaded be
P(X > 168 ) = P( )
= P( z > )
= P( z > -0.371)
= 1 - P ( z ≤ -0.371 )
= 1 - P( z > 0.371)
= 1 - 0.00010363
= 0.9999
⇒P(X > 168) = 0.9999
As the probability of weight overload = 0.9999
So, The pilot has to be take strict action .
Answer:Divide your speed in feet per minute by 60
Step-by-step explanation:
Both angles 2x+6 and 96 shown are vertically opposite angles and vertically opposite angles are always equal
so 2x+6 should be equal to 96
so 2x + 6 = 96
Now we have to solve for x here and have to get x by itself on left hand side
So first get rid of +6 by doing its opposite -6 on both sides
2x + 6 -6 = 96 -6
2x = 90
Now to get x by itself we have to get rid of 2, for that divide both sides by 2
x = 45
Hence proved that x = 45