1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tekilochka [14]
2 years ago
15

Help??? There's a photo.

Mathematics
1 answer:
Nataly_w [17]2 years ago
3 0
I believe the answer is C
You might be interested in
I need help with this math work
Marizza181 [45]
What are the directions for this?
7 0
2 years ago
Imelda needs to convert 440 centimeters per minute to meters per hour .Which conversion factors should she use
tatuchka [14]
<span>1cm/0.01m and 60min/1h</span>
6 0
3 years ago
The Empirical Rule The following data represent the length of eruption for a random sample of eruptions at the Old Faithful geys
ad-work [718]

Answer:

(a) Sample Standard Deviation approximately to the nearest whole number = 6

(b) The use of Empirical Rule to make any general statements about the length of eruptions is empirical rules tell us about how normal a distribution and gives us an idea of what the final outcome about the length of eruptions is.

(c) The percentage of eruptions that last between 92 and 116 seconds using the empirical rule is 95%

(d) The actual percentage of eruptions that last between 92 and 116 seconds, inclusive is 95.45%

(e) The percentage of eruptions that last less than 98 seconds using the empirical rule is 16%

(f) The actual percentage of eruptions that last less than 98 seconds is 15.866%

Step-by-step explanation:

(a) Determine the sample standard deviation length of eruption.

Express your answer rounded to the nearest whole number.

Step 1

We find the Mean.

Mean = Sum of Terms/Number of Terms

= 90+ 90+ 92+94+ 95+99+99+100+100, 101+ 101+ 101+101+ 102+102+ 102+103+103+ 103+103+103+ 104+ 104+104+105+105+105+ 106+106+107+108+108+108 + 109+ 109+ 110+ 110+110+110+ 110+ 111+ 113+ 116+120/44

= 4582/44

= 104.1363636

Step 2

Sample Standard deviation = √(x - Mean)²/n - 1

=√( 90 - 104.1363636)²+ (90-104.1363636)² + (92 -104.1363636)² ..........)/44 - 1

= √(199.836777 + 199.836777 + 147.2913224+ 102.7458678+ 83.47314049+ 26.3822314+ 26.3822314+ 17.10950413+17.10950413+ 9.836776857+ 9.836776857, 9.836776857+9.836776857+ 4.564049585+ 4.564049585+ 4.564049585+ 1.291322313+ 1.291322313+ 1.291322313+ 1.291322313+ 1.291322313+ 0.01859504133+ 0.01859504133+ 0.01859504133+ 0.7458677685+ 0.7458677685+ 0.7458677685+ 3.473140497+ 3.473140497+ 8.200413225+ 14.92768595+ 14.92768595+ 14.92768595+ 23.65495868+ 23.65495868+ 34.38223141+ 34.38223141+34.38223141+ 34.38223141+ 34.38223141+47.10950414+ 78.56404959+ 140.7458677+ 251.6549586) /43

= √1679.181818/43

= √39.05073996

= 6.249059126

Approximately to the nearest whole number:

Mean = 104

Standard deviation = 6

(b) On the basis of the histogram drawn in Section 3.1, Problem 28, comment on the appropriateness of using the Empirical Rule to make any general statements about the length of eruptions.

The use of Empirical Rule to make any general statements about the length of eruptions is empirical rules tell us about how normal a distribution and gives us an idea of what the final outcome about the length of eruptions is .

(c) Use the Empirical Rule to determine the percentage of eruptions that last between 92 and 116 seconds.

The empirical rule formula states that:

1) 68% of data falls within 1 standard deviation from the mean - that means between μ - σ and μ + σ .

2) 95% of data falls within 2 standard deviations from the mean - between μ – 2σ and μ + 2σ .

3)99.7% of data falls within 3 standard deviations from the mean - between μ - 3σ and μ + 3σ

Mean = 104, Standard deviation = 6

For 68% μ - σ = 104 - 6 = 98, μ + σ = 104 + 6 = 110

For 95% μ – 2σ = 104 -2(6) = 104 - 12 = 92

μ + 2σ = 104 +2(6) = 104 + 12 = 116

Therefore, the percentage of eruptions that last between 92 and 116 seconds is 95%

(d) Determine the actual percentage of eruptions that last between 92 and 116 seconds, inclusive.

We solve for this using z score formula

The formula for calculating a z-score is is z = (x-μ)/σ

where x is the raw score, μ is the population mean, and σ is the population standard deviation.

Mean = 104, Standard deviation = 6

For x = 92

z = 92 - 104/6

= -2

Probability value from Z-Table:

P(x = 92) = P(z = -2) = 0.02275

For x = 116

z = 92 - 116/6

= 2

Probability value from Z-Table:

P(x = 116) = P(z = 2) = 0.97725

The actual percentage of eruptions that last between 92 and 116 seconds

= P(x = 116) - P(x = 92)

= 0.97725 - 0.02275

= 0.9545

Converting to percentage = 0.9545 × 100

= 95.45%

Therefore, the actual percentage of eruptions that last between 92 and 116 seconds, inclusive is 95.45%

(e) Use the Empirical Rule to determine the percentage of eruptions that last less than 98 seconds

The empirical rule formula:

1) 68% of data falls within 1 standard deviation from the mean - that means between μ - σ and μ + σ .

2) 95% of data falls within 2 standard deviations from the mean - between μ – 2σ and μ + 2σ .

3)99.7% of data falls within 3 standard deviations from the mean - between μ - 3σ and μ + 3σ

For 68% μ - σ = 104 - 6 = 98,

Therefore, 68% of eruptions that last for 98 seconds.

For less than 98 seconds which is the Left hand side of the distribution, it is calculated as

= 100 - 68/2

= 32/2

= 16%

Therefore, the percentage of eruptions that last less than 98 seconds is 16%

(f) Determine the actual percentage of eruptions that last less than 98 seconds.

The formula for calculating a z-score is z = (x-μ)/σ, where x is the raw score, μ is the population mean, and σ is the population standard deviation.

For x = 98

Z score = x - μ/σ

= 98 - 104/6

= -1

Probability value from Z-Table:

P(x ≤ 98) = P(x < 98) = 0.15866

Converting to percentage =

0.15866 × 100

= 15.866%

Therefore, the actual percentage of eruptions that last less than 98 seconds is 15.866%

4 0
2 years ago
What does h(40) = 1400 mean in terms of the problem
frutty [35]
The answer is B because 40 is under hours of training and 1400 is under monthly pay


4 0
3 years ago
Read 2 more answers
Calculate the standard score of the given X value, X=28.3, where μ=26.3 and σ=28.1 and indicate on the curve where z will be loc
zmey [24]

Answer:

Standard score z=0.07

Step-by-step explanation:

The z-score, or standard score, represents an equivalent value for X but in the standard normal distribution, where μ=0 and σ=1.

For X=28.3 in a normal distribution with μ=26.3 and σ=28.1, the standard score can be calculated as:

z=\dfrac{X-\mu}{\sigma}=\dfrac{28.3-26.3}{28.1}=\dfrac{2}{28.1}=0.07

This value is 0.07 standard deviations right to the mean.

In the picture attached, we have located the z-score.        

5 0
3 years ago
Other questions:
  • Emma spent 4 1/2 days planting her garden. Her brother spent 2/9 as much time as Emma did. How many days did her brother spend p
    15·2 answers
  • 3 2/5 x 2 1/3 plz hurry
    10·1 answer
  • Sum of 1.08, 2.16, and .003
    9·1 answer
  • Megan is taking piano lessons and gymnastics lessons. She has piano lessons every 7 days and gymnastics every 3 days. How often
    5·2 answers
  • Given the measure of arc AC is 114, what is the measure of angle ADC
    11·2 answers
  • Simplify the expression below.<br> √169
    8·2 answers
  • 262.5=10.5x+24x<br> How can I solve this?
    6·1 answer
  • Translate the sentence into an Intequality<br><br><br> Eight subtracted from y is greater than 25
    9·1 answer
  • HELP!! Does anyone know what 0.08 is in word form?
    13·1 answer
  • 7.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!