In order to change from 35 to 62, we have to add 27. So, the question becomes: which percentage of 35 is 27?
To answer this question, we set this simple equation

And solving for x we have

So, if you change from 35 to 62, you have an increase of about 77%
With the given information, we can create several equations:
120 = 12x + 2y
150 = 10x + 10y
With x being the number of rose bushes, and y being the number of gardenias.
To find the values of the variables, we can use two methods: Substitution or Elimination
For this case, let us use elimination. To begin, let's be clear that we are going to be adding these equations together. Therefore, in order to get the value of one variable, we must cancel one of them out - it could be x or y, it doesn't matter which one you decide to cancel out. Let's cancel the x out:
We first need to multiply the equations by numbers that would cause the x's to cancel out - and this can be done as follows:
-10(120 = 12x + 2y)
12(150 = 10x + 10y) => Notice how one of these is negative
Multiply out:
-1200 = -120x - 20y
+ 1800 = 120x + 120y => Add these two equations together
---------------------------------
600 = 100y
Now we can solve for y:
y = 6
With this value of y known, we can then pick an equation from the beginning of the question, and plug y in to solve for x:
120 = 12x + 2y => 120 = 12x + 2(6)
Now we can solve for x:
120 = 12x + 12 => 108 = 12x
x = 9
So now we know that x = 9, and y = 6.
With rose bushes being x, we now know that the cost of 1 rose bush is $9.
With gardenias being y, we now know that the cost of 1 gardenia is $6.
<span>we have that
the cube roots of 27(cos 330° + i sin 330°) will be
</span>∛[27(cos 330° + i sin 330°)]
we know that
e<span>^(ix)=cos x + isinx
therefore
</span>∛[27(cos 330° + i sin 330°)]------> ∛[27(e^(i330°))]-----> 3∛[(e^(i110°)³)]
3∛[(e^(i110°)³)]--------> 3e^(i110°)-------------> 3[cos 110° + i sin 110°]
z1=3[cos 110° + i sin 110°]
cube root in complex number, divide angle by 3
360nº/3 = 120nº --> add 120º for z2 angle, again for z3
<span>therefore
</span>
z2=3[cos ((110°+120°) + i sin (110°+120°)]------ > 3[cos 230° + i sin 230°]
z3=3[cos (230°+120°) + i sin (230°+120°)]--------> 3[cos 350° + i sin 350°]
<span>
the answer is
</span>z1=3[cos 110° + i sin 110°]<span>
</span>z2=3[cos 230° + i sin 230°]
z3=3[cos 350° + i sin 350°]<span>
</span>
Answer:
If twice the opposite of a number increased by five, then the result is the opposite of a number.
The asiest way to solve this is the guess and check method. It is asking you what a number doubled then by adding five is the opposite of that number. Now go through a few SINGLE digit numbers to try and solve. I hope this helps.
I would say origin, but it's a hard choice.