Here’s the answers hope this helps.
Answer:
0.8041 = 80.41% probability that a given battery will last between 2.3 and 3.6 years
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
A certain type of storage battery lasts, on average, 3.0 years with a standard deviation of 0.5 year
This means that 
What is the probability that a given battery will last between 2.3 and 3.6 years?
This is the p-value of Z when X = 3.6 subtracted by the p-value of Z when X = 2.3. So
X = 3.6



has a p-value of 0.8849
X = 2.3



has a p-value of 0.0808
0.8849 - 0.0808 = 0.8041
0.8041 = 80.41% probability that a given battery will last between 2.3 and 3.6 years
See the attached figure
DB = 4 and DC = 6 , We need to find AD
Using <span>Euclid's theorem for the right triangle
</span><span>
</span><span>∴ DB² = AD * DC
</span><span>
</span><span>∴ 4² = AD * 6
</span><span>
</span><span>∴ 6 AD = 16
</span><span>
</span><span>
</span><span>
∴ AD = 16/6 = 8/3 ≈ 2.67</span>
Answer:
a. Slope = 2; y-intercept = 2
b. Slope = 2; y-intercept = 3
c. Slope = 2; y-intercept = -1
d. Slope = -2; y-intercept = 5
e. Slope = -3; y-intercept = -5
d. Slope = -2; y-intercept = 1
Step-by-step explanation:
I Hope That This Helps! :)