1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BaLLatris [955]
2 years ago
6

Simplify the expression. Assume that all variables represent nonzero real numbers.StartFraction (4 n Superscript 4 Baseline q Su

perscript 5 )squared (8 n Superscript 4 Baseline q )Superscript negative 2 Over (negative 3 nq Superscript 9 )Superscript negative 1 Baseline (4 n cubed q Superscript 9 )cubed EndFraction StartFraction
Mathematics
1 answer:
Alja [10]2 years ago
4 0

Answer:

\frac{ - 3}{ 256  {q}^{10} {n}^{8}  }

Step by step explanation:

\frac{ {(4 {n}^{4} {q}^{5})}^{2}  {(8 {n}^{4} q)}^{-2} }{  {(- 3 {nq}^{9})}^{ - 1}   {(4 {n}^{3} {q}^{9})  }^{3} }

first we will change the terms with negative superscrips to the other side of the fraction

\frac{{(4 {n}^{4} {q}^{5})}^{2}{(- 3 {nq}^{9})}^{ 1}}{{(4 {n}^{3} {q}^{9})}^{3} {(8 {n}^{4} q)}^{2} }

then we will distribute the superscripts

\frac{ {4}^{2} {n}^{2 \times 4} {q}^{2 \times 5} (- 3) {nq}^{9}}{ {4 }^{3}{n}^{3 \times 3} {q}^{9 \times 3} {8 }^{2}{n}^{4 \times 2}  {q}^{2} }

\frac{ {4}^{2} {n}^{8} {q}^{10} (- 3) {nq}^{9}}{ {4 }^{3}{n}^{9} {q}^{27} {8 }^{2}{n}^{8}  {q}^{2} }

as when multiplying two powers that have the same base, we can add the exponents and, to divide podes with the same base, we can subtract the exponents

{4}^{2 - 3}  {q}^{10  + 9 - 2 - 27}  {n}^{8 + 1 - 8 - 9}  {8}^{ - 2}  { (- 3)}^{1}

{4}^{ - 1}  {q}^{ - 10}  {n}^{ - 8}  {8}^{ - 2}  { (- 3)}^{1}

then we will change again the terms with negative superscrips to the other side of the fraction

\frac{ - 3}{ 4 \times  {8}^{2}  {q}^{10} {n}^{8}  }

\frac{ - 3}{ 256  {q}^{10} {n}^{8}  }

You might be interested in
Please help me if you can. Sorry if it’s blurry
jarptica [38.1K]

Step-by-step explanation:

oh, come on, just multiplication.

7.5×10⁴ years is 7.5×10000 =75000 years.

0.005 inches per year for 75000 years means

0.005 × 75000 = 5 × 75 = 375 inches.

7 0
2 years ago
The functions f(x) = (x + 1)2 − 2 and g(x) = -(x − 2)2 + 1 have been rewritten using the completing-the-square method. Is the ve
Ksenya-84 [330]

Answer:

The negative outside the parentheses indicates that the vertex is a maximum

f(x) has a minimum vertex

g(x) has a maximum

Step-by-step explanation:

7 0
3 years ago
A recipe calls for 2/5 cup of sugar for every 8 teaspoons of vanilla. What is the unit rate in teaspoons per cup ?
tamaranim1 [39]
For 2/5 cup, vanilla needed = 8 teaspoons
so, for 1 cup, it would be: 8 / 2/5
⇒8 × 5/2
⇒40/2
⇒20

In short, Your Answer would be 20 teaspoons

Hope this helps!
7 0
3 years ago
Read 2 more answers
5.3, CD r- 8.8, and AD - 14.3, find AB to the nearest tenth.<br>If BC
pychu [463]
5.3/8.8=x/14.3 
AB is x,
x= 2.43

Hope I helped.
7 0
3 years ago
G(1) = 0<br> =<br> lgn= ) +m<br> g(n) = g(n - 1) +n<br> =<br> -<br> n<br> g(2) =
yKpoI14uk [10]

Answer:

g(1) = 0

=

lgn= ) +m

g(n) = g(n - 1) +n

=

-

n

g(2) =12

Step-by-step explanation:

12345678910

6 0
2 years ago
Other questions:
  • for a function, can the number of elements in the range be greater than the number of elements in the domain? explain.
    7·2 answers
  • Which step brings you closest to getting the variable alone on one side of the equation
    11·2 answers
  • 3. Which angle corresponds to /3?
    8·2 answers
  • Determine if the three side lengths could form a right triangle.<br> 4, 11, 16
    6·1 answer
  • Find the 11th term of the geometric sequence 6, -18, 54
    13·1 answer
  • Please answer this!!!
    13·2 answers
  • 4 x 3/4<br> SHeeeeeeeeeeeeesh
    6·1 answer
  • <img src="https://tex.z-dn.net/?f=5%20%7B%7D%5E%7Bn%20%2B%201%7D%20%20%2B%205%20%7B%7D%5E%7Bn%20%2B%202%7D%20" id="TexFormula1"
    14·1 answer
  • This is the question ^^ help
    15·1 answer
  • Please answer below :)
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!