1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vlada-n [284]
3 years ago
13

Evaluate [(40 + 5) − 3^2] ÷ 9 ⋅ 2. (1 point)

Mathematics
1 answer:
Ostrovityanka [42]3 years ago
3 0

Answer:

[(40 + 5) − 32] ÷ 9 ⋅ 2

[(45) − 32] ÷ 9 ⋅ 2

[(13)] ÷ 9 ⋅ 2

[(13)] ÷ 9 ⋅ 2

  _

1.4... ⋅ 2

_

2.8... ←Answer

Step-by-step explanation:

You might be interested in
You play a game that involves spinning a wheel. Each section of the wheel shown has the same area. Use a sample space to determi
Anastasy [175]

Answer:

is it fighet spinner or I am wrong hahahaa fighet spinner

7 0
3 years ago
Read 2 more answers
X, Y and Z form the vertices of a triangle. XY = 12.4m, XZ = 10.4m and YZ = 8.7m. Find the angle ∠ YXZ rounded to 1 DP.
sweet-ann [11.9K]

Answer:

43.8°

Step-by-step explanation:

Applying,

Cosine rule,

From the diagram attached,

x² = y²+z²-2yxcos∅.................... Equation 1

where ∅ = ∠YXZ

Given: x = 8.7 m, y = 10.4 m, z = 12.4 m

Substitute these values  into equation 1

8.7² = 10.4²+12.4²-[2×10.4×12.4cos∅]

75.69 = (108.16+153.76)-(257.92cos∅)

75.69 = 261.92-257.92cos∅

collect like terms

257.92cos∅ = 261.92-75.69

257.92cos∅ = 186.23

Divide both sides by the coefficient of cos∅

cos∅ = 186.23/257.92

cos∅ = 0.722

Find the cos⁻¹ of both side.

∅ = cos⁻¹(0.7220)

∅ = 43.78°

∅ = 43.8°

6 0
3 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
2 years ago
A private jet flies the same distance in 10 hours that a commercial jet flies in 8 hours. If the speed of the commercial jet was
Vladimir [108]
Commercial jet's speed = 2x-162 (plug this in the equation below)

Private jet's speed = x

Equation:

10(x) = 8(2x-162)
10x = 16x - 1296
6x = 1296
x = 216 (Private jet's speed)

Take the first equation and plug x value in;
2x-162
2(216) - 162 = 270 ( Commercial jet's speed)
4 0
3 years ago
Read 2 more answers
Serena's average speed during her training run was 8 kilometers per hour over the 2 hours that she ran What was the total
Elena-2011 [213]

Answer:

16

Step-by-step explanation:

8x2=16

8 0
3 years ago
Other questions:
  • Find the​ mean, variance, and standard deviation of the binomial distribution with the given values of n and p. ​, The​ mean, ​,
    8·1 answer
  • A person who is six feet tall casts a 3-foot-long shadow. A nearby pine tree casts a 15-foot-long shadow.What is the height hh o
    9·2 answers
  • Gas mileage actually varies slightly with the driving speed of a car​ (as well as with highway vs. city​ driving). Suppose your
    14·1 answer
  • The perimeter of a square is represented by the expression 32x - 12.8
    10·1 answer
  • 60"
    11·1 answer
  • If you have four quarters and three nickles how much money do you have
    15·2 answers
  • Which of the following is an EQUATION?
    10·2 answers
  • If f(x)= x + x2 and g(x)<br> +7?+ 1, what is the value of f(x) - g(x) when x = 1?
    11·1 answer
  • Plzzzzzzzzzzz help meee answer plzzzzz
    15·2 answers
  • 2. A company determines that the monthly cost in pesos to produce a certain model of a
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!