Answer:Well, I don't know what you got so I can't tell you if it is right.
If it works in both equations, it depends of whether your equations are set up correctly.
Here is how I would do this problem.
Let x = no. of hot dogs,y = number of sodas.
First equation is just about the number of things.
x + y = 15
Second equation is about the cost of things.
1.5 x + .75 y = 18
solve x+y = 15 for y y = 15-x substitute into second equation
1.5x + .75(15 - x) = 18
You should get the correct answer for number of hot dogs if you solve this correctly. Put your answer in the x + y =15 equation to get y. Then put both x and y into the cost equation and check your answer.
Hope this helps.
Step-by-step explanation:
<span>3(x+2)= 4x+1 |Given
3x+6= 4x+1 |Distributive
−x+6= 1 |SPOE (Subtraction Property of Equality)
−x= −5 |SPOE
x=5 |MPOE (Multiplication Property of Equality)</span>
4(x -2) +(y +5) = 0 . . . . . an equation
4x +y = 3 . . . . . . . . . . . . the equation in standard form
___
A graph can be seen at
https://www.desmos.com/calculator/3ct9gfxclj
Answer:
D.) 12
Step-by-step explanation:
16x - 3(4x + 5) = 2x + 9
16x - 12x - 15 = 2x + 9
4x - 2x = 15 + 9
2x = 24
2x/2 = 24/2
x = 12
Check:
16x - 3(4x + 5) = 2x + 9
16(12) - 3(4(12) + 5) = 2(12) + 9
192 - 3(48 + 5) = 2(12) + 9
192 - 3(53) = 24 + 9
192 - 159 = 33
33 = 33
Bacteria growth occurs exponentially; bacteria divides into 2 every t minutes (similar to the penny doubling every day story). If one gets filled, and the contents divides once, there will be enough for 2 bottles; when these two are ready to divide, there will be enough for 4. This growth process begins very slowly - 1, 2, 4, 8, 16, 32; but it soon speeds up greatly, 64, 128, 256, 512, 1024, 2048.