Answer:
The ordered pair that satisfies this problem is (1, -6); x = 1 when y = -6.
Step-by-step explanation:
Please, rewrite your question as follows:
"Suppose that y varies directly with x and y = 12 when x = -2. What is x when
y = -6?" The " = " sign must be included.
The pertinent proportional relationship is y = kx, where k is the constant of proportionality.
We must find k here. Let y = 12 and x = -2. Then 12 = k(-2), or k = -6.
Then the relationship is y = -6x.
Now let y = -6 and find x: -6 = -6x, or x = 1.
The ordered pair that satisfies this problem is (1, -6)
Answer:
it is makeing me do it
Step-by-step explanation:
Part a)
It was given that 3% of patients gained weight as a side effect.
This means


The mean is


The standard deviation is



We want to find the probability that exactly 24 patients will gain weight as side effect.
P(X=24)
We apply the Continuity Correction Factor(CCF)
P(24-0.5<X<24+0.5)=P(23.5<X<24.5)
We convert to z-scores.

Part b) We want to find the probability that 24 or fewer patients will gain weight as a side effect.
P(X≤24)
We apply the continuity correction factor to get;
P(X<24+0.5)=P(X<24.5)
We convert to z-scores to get:

Part c)
We want to find the probability that
11 or more patients will gain weight as a side effect.
P(X≥11)
Apply correction factor to get:
P(X>11-0.5)=P(X>10.5)
We convert to z-scores:


Part d)
We want to find the probability that:
between 24 and 28, inclusive, will gain weight as a side effect.
P(24≤X≤28)=
P(23.5≤X≤28.5)
Convert to z-scores:

54% = 54/100 = 27/50
Answer: 27/50
Hope it helped :)