M to the power 4 squared minus 23
Answer: multiply 10 to both terms and subrtact products
Step-by-step explanation:
10(5 - 2x)
multipy 10 to both terms
50 20x
subtract products
50 - 20x
Answer:
There is no solution
Step-by-step explanation:
4x - 2y = 5 --> 4x - 2(2x + 10) = 5
4x - 4x - 20 = 5
4x - 4x -25 = 0
Final answer is -25 = 0 and so therefor it is no solution
Answer:
First, you need to know how to multiply two monomials together. A monomial is a one term polynomial.
2x × 5x, 2x²y × 3xy², and ab² × 4b³ are examples of products of monomials.
To multiply monomials together, multiply the number parts together and multiply the variables together.
Here are the 3 examples above solved:
2x × 5x = 10x²
2x²y × 3xy² = 6x³y³
ab² × 4b³ = 4ab^5
To multiply two polynomials together, multiply every term of the first polynomial by every term of the second polynomial. then combine like terms.
Example:
(2x² + 3x - 8)(4x³ - 5x²) =
= 2x² × 4x³ + 2x² × (-5x²) + 3x × 4x³ + 3x × (-5x²) - 8 × 4x³ - 8 × (-5x²)
= 8x^5 - 10x^4 + 12x^4 - 15x³ - 32x³ + 40x²
= 8x^5 + 2x^4 - 47x³ + 40x²
This is a lot of material in very little space. You need to start with simple examples of multiplication of 2 monomials. Then practice multiplying a monomial by a binomial. Then practice with polynomials of more terms.