1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masteriza [31]
3 years ago
9

In the far future, astronauts travel to the planet Saturn and land on Mimas, one of its 62 moons. Mimas is small compared with t

he Earth's moon, with mass Mm = 3.75 ✕ 1019 kg and radius Rm = 1.98 ✕ 105 m, giving it a free-fall acceleration of g = 0.0636 m/s2. One astronaut, being a baseball fan and having a strong arm, decides to see how high she can throw a ball in this reduced gravity. She throws the ball straight up from the surface of Mimas at a speed of 43 m/s (about 96 mph, the speed of a good major league fastball)."
Required:
a. Predict the maximum height of the ball assuming g is constant and using energy conservation. Mimas has no atmosphere, so there is no air resistance.
b. Now calculate the maximum height using universal gravitation.
c. How far off is your estimate of part (a)? Express your answer as a percent difference and indicate if the estimate is too high or too low.
Physics
1 answer:
Mamont248 [21]3 years ago
7 0

Answer:

a)h_{max}=14536.16 m

b)h = 15687.9 m

c)PD=7.62\% The estimate is low.

Explanation:

a) Using the energy conservation we have:

E_{initial}=E_{final}

we have kinetic energy intially and gravitational potential energy at the maximum height.

\frac{1}{2}mv^{2}=mgh_{max}

h_{max}=\frac{v^{2}}{2g}

h_{max}=\frac{43^{2}}{2*0.0636}

h_{max}=14536.16 m  

b)  We can use the equation of the gravitational force

F=G\frac{mM}{R^{2}}   (1)

We have that:

F = ma    (2)

at the surface G will be:

G=\frac{gR^{2}}{M}

Now the equation of an object at a distance x from the surface.

is:

F=\frac{mgR^{2}}{(R+x)^{2}}

m\frac{dv}{dt}=\frac{mgR^{2}}{(R+x)^{2}}

Using that dv/dt is vdx/dt and integrating in both sides we have:

v_{0}=\sqrt{\frac{2gRh}{R+h}}

h=\frac{v_{0}^{2}R}{2gR-v_{0}^{2}}

h=15687.9

c) The difference is:

So the percent difference will be:

PD=|\frac{14536.16-15687.9}{(14536.16+15687.9)/2}*100%

PD=7.62\%

The estimate is low.

I hope it helps you!

You might be interested in
Qqqqqqqqqqqqqqqqqqqqqqqqqqqq
tester [92]
Great question the answer is -25x.
3 0
2 years ago
A proton is accelerated from rest through a potential difference V0 and gains a speed v0. If it were accelerated instead through
Neporo4naja [7]

Answer:

Explanation:

Let the charge on proton be q .

energy gain by proton in a field having potential difference of V₀

= V₀ q

Due to gain of energy , its kinetic energy becomes 1/2 m v₀²

where m is mass and v₀ is velocity of proton

V₀ q = 1/2 m v₀²

In the second case , gain of energy in electrical field

= 2 V₀q , if v be the velocity gained in the second case

2 V₀q = 1/2 m v²

1/2 m v² = 2 V₀q = 2 x 1/2 m v₀²

mv² = 2  m v₀²

v = √2 v₀

6 0
2 years ago
Why is gravitational force always towards the center?
lesya692 [45]

Answer:

i beleave cuz of the Earth is spherical

Explanation:

6 0
2 years ago
Read 2 more answers
A submarine is 2.84 102 m horizontally from shore and 1.00 102 m beneath the surface of the water. A laser beam is sent from the
xxMikexx [17]

Answer:

468 m

Explanation:

So the building and the point where the laser hit the water surface make a right triangle. Let's call this triangle ABC where A is at the base of the building, B is at the top of the building, and C is where the laser hits the water surface. Similarly, the submarine, the projected submarine on the surface and the point where the laser hit the surface makes a another right triangle CDE. Let D be the submarine and E is the other point.

The length CE is length AE - length AC = 284 - 234 = 50 m

We can calculate the angle ECD:

tan(\hat{ECD}) = \frac{ED}{EC} = \frac{100}{50} = 2

\hat{ECD} = tan^{-1} 2 = 63.43^o

This is also the angle ACB, so we can find the length AB:

tan(\hat{ACB}) = \frac{AB}{AC} = \frac{AB}{234}

2 = \frac{AB}{234}

AB = 2*234 = 468 m

So the height of the building is 468m

5 0
3 years ago
The center of mass is
PolarNik [594]
D is the best answer. In many physics problems we treat an extended object as if it were a point with the same mass located at the center of mass.
5 0
3 years ago
Other questions:
  • A 610-N hiker carrying an 11.0-kg backpack hiked up a trail for 23 minutes. At the end of that time, he is 150 m higher than whe
    12·1 answer
  • Which action packs down the soil and depletes vegetation? A. wind erosion B. overgrazing C. sedimentation D. sand dune formation
    13·2 answers
  • Julie has a mass of 49k. She is 6meters above Th water(0 meters). What is her kinetic energy before hitting the water. What is h
    7·1 answer
  • The kinetic energy of an object is equal to the?
    15·1 answer
  • A child, who is 45 m from the bank of a river, is being carried helplessly downstream by the river's swift current of 1.0 m/s. A
    12·1 answer
  • A plant blossoms with violet-colored flowers. The flowers appear violet because they all light rays except for rays.
    8·2 answers
  • If you weigh 660 N on the earth, what would be your weight on the surface of a neutron star that has the same mass as our sun an
    12·1 answer
  • Sempre que os corpos vibram e as vibrações se propagam num meio material como o ar, produzem ondas sonoras que são ondas de pres
    10·1 answer
  • A machine used an input force of 200 N to produce an output force of 800N. What is the mechanical advantage of this machine?
    7·2 answers
  • Stella is driving down a steep hill. she should keep her car __________ to help _________.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!