Answer:
the resulting angular acceleration is 15.65 rad/s²
Explanation:
Given the data in the question;
force generated in the patellar tendon F = 400 N
patellar tendon attaches to the tibia at a 20° angle 3 cm( 0.03 m ) from the axis of rotation at the knee.
so Torque produced by the knee will be;
T = F × d⊥
T = 400 N × 0.03 m × sin( 20° )
T = 400 N × 0.03 m × 0.342
T = 4.104 N.m
Now, we determine the moment of inertia of the knee
I = mk²
given that; the lower leg and foot have a combined mass of 4.2kg and a given radius of gyration of 25 cm ( 0.25 m )
we substitute
I = 4.2 kg × ( 0.25 m )²
I = 4.2 kg × 0.0626 m²
I = 0.2625 kg.m²
So from the relation of Moment of inertia, Torque and angular acceleration;
T = I∝
we make angular acceleration ∝, subject of the formula
∝ = T / I
we substitute
∝ = 4.104 / 0.2625
∝ = 15.65 rad/s²
Therefore, the resulting angular acceleration is 15.65 rad/s²
Answer:
Part a)

Part b)

Part c)


Explanation:
Part a)
As we know that frequency = 1 MHz
speed of electromagnetic wave is same as speed of light
So the wavelength is given as



Part b)
As we know the relation between electric field and magnetic field



Part c)
Intensity of wave is given as



Pressure is defined as ratio of intensity and speed


Answer:
What should I do. reply quickly for a quick answer
Answer:
A. The momentum of car A(5kg) is EQUAL to that of car B(0.5)
Explanation:
The moment, or impulse formula of the same forces acting on both car within 1 second is

In our case the forces are the same, the time duration of force acting on the cars are the same. Therefore, their momentum right after the force must also be the same.