The mass would still be the same 25.0 g but the volume would be bigger
Bacteria are the living/biotic components in an ecosystem.
Answer:
27 liters of hydrogen gas will be formed
Explanation:
Step 1: Data given
Number of moles C = 1.03 moles
Pressure H2 = 1.0 atm
Temperature = 319 K
Step 2: The balanced equation
C +H20 → CO + H2
Step 3: Calculate moles H2
For 1 mol C we need 1 mol H2O to produce 1 mol CO an 1 mol H2
For 1.03 moles C we'll have 1.03 moles H2
Step 4: Calculate volume H2
p*V = n*R*T
⇒with p = the pressure of the H2 gas = 1.0 atm
⇒with V = the volume of H2 gas = TO BE DETERMINED
⇒with n = the number of moles H2 gas = 1.03 moles
⇒with R = the gas constant = 0.08206 L*Atm/mol*K
⇒with T = the temperature = 319 K
V = (n*R*T)/p
V = (1.03 * 0.08206 *319) / 1
V = 27 L
27 liters of hydrogen gas will be formed
Correct Question: what is the oxidizing agent in the reaction.
2MnO4–(aq) +10Cl–(aq) + 16H+(aq) --------> 5Cl2(g) + 2Mn2+(aq) +8H2O(l)
Answer: MnO4-is the oxidizing agent
Explanation:
In the reaction 2MnO4–(aq) +10Cl–(aq) + 16H+(aq) --------> 5Cl2(g) + 2Mn2+(aq) +8H2O(l)
Oxidizing agent oxidizes other molecules while the themselves get reduced.
oxidizing agents give away Oxygen to other compounds.
MnO4-is the oxidizing agent because
On the reactants side
Oxidation number of Mn in 2MnO4- is +7
Oxidation number of Cl- is -1
On the products side
Oxidation number of Mn is +2
While oxidation number of Cl is zero
Therefore the oxidizing agent is 2MnO4 because is oxidizes Chlorine from -1 to 0 while itself got reduced from oxidation state of +7 to +2