Answer:
0.32M
Explanation:
<u>Step 1:</u> Balance the reaction
K2CO3 + Ba(NO3)2 ⇔ KNO3 + BaCO3
We have a 20 mL 0.2 M K2CO3 and a 30mL 0.4M Ba(NO3)2 solution
SinceK2CO3 is the limiting reactant, there will remain Ba(NO3)2 after it's consumed and produced KNO3 + BaCO3
<u>Step 2: </u>Calculate concentration
To find the concentration of the barium cation we use the following equation:
Concentration = moles of the <u>solute</u> / volumen of the <u>solution</u>
<u />
<u>[Ba2+] </u> = (20 * 10^-3 * 0.2M + 30 * 10^-3 * 0.4M) / ( 20 + 30mL) *10^-3
[Ba2+] = 0.32 M
The concentration of Barium ion in solution is 0.32 M
Answer: the sum of the partial pressures of the individual gases.
Explanation:
According to Dalton's Law of partial pressure, the total pressure of a mixture of gases is equal to the sum of the partial pressures which each individual gas would exert if it were confined alone in the volume occupied by the mixture.
Hence, Ptotal = P1+ P2
where Ptotal is the total pressure
P1 and P2 are the partial pressures exerted seperately by the individual gases 1 and 2 that make up the mixture.
A I’m sure of it because it only makes since one would think ✊
Answer:
option B.
Explanation:
Given,
V₁ = 156 L
P₁ =2 atm
Now, in the cylinder
P₂ = ?
V₂ = 36
Using relation between pressure and volume



Hence, pressure is equal to 8.67 atm.
Hence, the correct answer is option B.