Answer:
If y(t) is the mass (in mg) remaining after t years, then y(t) = y(0) (0.5)^{t/T} = 400 (0.5)^{t /4}, where T is the half-life period and y(0) is the amount at t = 0 years (initial).
Then at t = 20:
y(20) = 400 (0.5)^{20 /4} = \text{12.5 mg}
Step-by-step explanation:
5 2/3 - 3/4
5 8/12 - 9/12
4 20/12 - 9/12
4 11/12
me too..
<em>Volume</em><em> </em><em>of</em><em> </em><em>cylinder</em><em> </em><em>is</em><em> </em>
<em></em>
22/7 × 16 ×11
= 553.14 cubic centimeters.