Answer: y= -3/8
Step-by-step explanation:
Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation
check the picture below on the top side.
we know that x = 4 = b, therefore, using the 30-60-90 rule, h = 4√3, and DC = 4+8+4 = 16.
![\bf \textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} a,b=\stackrel{bases}{parallel~sides}\\ h=height\\[-0.5em] \hrulefill\\ a=8\\ b=\stackrel{DC}{16}\\ h=4\sqrt{3} \end{cases}\implies A=\cfrac{4\sqrt{3}(8+16)}{2} \\\\\\ A=2\sqrt{3}(24)\implies \boxed{A=48\sqrt{3}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%0AA%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%0A%5Cbegin%7Bcases%7D%0Aa%2Cb%3D%5Cstackrel%7Bbases%7D%7Bparallel~sides%7D%5C%5C%0Ah%3Dheight%5C%5C%5B-0.5em%5D%0A%5Chrulefill%5C%5C%0Aa%3D8%5C%5C%0Ab%3D%5Cstackrel%7BDC%7D%7B16%7D%5C%5C%0Ah%3D4%5Csqrt%7B3%7D%0A%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B4%5Csqrt%7B3%7D%288%2B16%29%7D%7B2%7D%0A%5C%5C%5C%5C%5C%5C%0AA%3D2%5Csqrt%7B3%7D%2824%29%5Cimplies%20%5Cboxed%7BA%3D48%5Csqrt%7B3%7D%7D)
now, check the picture below on the bottom side.
since we know x = 9, then b = 9, therefore DC = 9+6+9 = 24, and h = b = 9.
![\bf \textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} a,b=\stackrel{bases}{parallel~sides}\\ h=height\\[-0.5em] \hrulefill\\ a=6\\ b=\stackrel{DC}{24}\\ h=9 \end{cases}\implies A=\cfrac{9(6+24)}{2} \\\\\\ A=\cfrac{9(30)}{2}\implies \boxed{A=135}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%0AA%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%0A%5Cbegin%7Bcases%7D%0Aa%2Cb%3D%5Cstackrel%7Bbases%7D%7Bparallel~sides%7D%5C%5C%0Ah%3Dheight%5C%5C%5B-0.5em%5D%0A%5Chrulefill%5C%5C%0Aa%3D6%5C%5C%0Ab%3D%5Cstackrel%7BDC%7D%7B24%7D%5C%5C%0Ah%3D9%0A%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B9%286%2B24%29%7D%7B2%7D%0A%5C%5C%5C%5C%5C%5C%0AA%3D%5Ccfrac%7B9%2830%29%7D%7B2%7D%5Cimplies%20%5Cboxed%7BA%3D135%7D)
<span>For the
presented problem, the solution would be</span><span> </span><span>v</span><span>(0)=0</span><span>v(0)=0</span><span> is</span><span>v</span><span>(</span><span>t</span><span>)−</span><span>mgb</span><span>=</span><span>e</span><span>−</span><span>b</span><span>/</span><span>m</span><span>⋅</span><span>t</span><span>(</span><span>v</span><span>0</span><span>−</span><span>mgb</span><span>)</span><span>⟺</span><span>v</span><span>(</span><span>t</span><span>)=</span><span>mgb</span><span>(</span><span>1−</span><span>e</span><span>−</span><span>b</span><span>/</span><span>m</span><span>⋅</span><span>t</span><span>)</span><span>≈</span><span>g</span><span>⋅</span><span>t</span><span>−</span><span>gb</span><span>2</span><span>m</span><span>⋅</span><span>t</span><span>2</span><span>,
with the following given, </span><span>
m</span><span>=180[lb]=81.6[kg]</span><span> </span>
<span>g</span><span>=9.81[m/s</span><span>2</span><span>]</span><span />
<span>b</span><span>=0.75[kg</span><span>⋅</span><span>m/s</span><span>2</span><span>⋅</span><span>s/ft]=0.2286[kg/s]</span><span />
<span>The solution that the
friction provides is </span><span>v</span><span>(</span><span>t</span><span>)=3501.7[m/s]</span><span>⋅</span><span>(</span><span>1−</span><span>e</span><span>−0.00280[1/s]</span><span>⋅</span><span>t</span><span>), where I get </span><span><span>96.69</span></span><span /><span><span><span><span>[</span></span><span /><span><span>m</span></span><span /><span><span><span><span>/</span></span></span></span></span><span><span><span>s</span></span><span /><span><span>]</span></span></span><span>=</span></span><span /><span><span>317.2</span></span><span /><span><span><span><span>[</span></span><span /><span><span>f</span><span>t</span></span><span /><span><span><span><span>/</span></span></span></span></span><span><span><span>s</span></span><span /><span><span>]</span></span></span></span><span><span /></span><span>. I
am hoping that this answer has satisfied your query about this specific
question.<span /></span>