Answer: OPTION B
Step-by-step explanation:
To solve this problem you must add the areas of each rectangle that form the prism;
The area of a rectangle can be calculated with the formula:

There are three pairs of equal rectangles, then you can find the surface area of 3 rectangles and multiply each one by 2, then you obtain that the surface area of the prism is:

Answer:
Step-by-step explanation:
Answer:
The number of minutes advertisement should use is found.
x ≅ 12 mins
Step-by-step explanation:
(MISSING PART OF THE QUESTION: AVERAGE WAITING TIME = 2.5 MINUTES)
<h3 /><h3>Step 1</h3>
For such problems, we can use probability density function, in which probability is found out by taking integral of a function across an interval.
Probability Density Function is given by:

Consider the second function:

Where Average waiting time = μ = 2.5
The function f(t) becomes

<h3>Step 2</h3>
The manager wants to give free hamburgers to only 1% of her costumers, which means that probability of a costumer getting a free hamburger is 0.01
The probability that a costumer has to wait for more than x minutes is:

which is equal to 0.01
<h3>
Step 3</h3>
Solve the equation for x

Take natural log on both sides

<h3>Results</h3>
The costumer has to wait x = 11.53 mins ≅ 12 mins to get a free hamburger
The minimum amount of points required to make a plane is 3 points.