1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vlada-n [284]
3 years ago
11

Solve the equation 4x^3 + 4x^2-x-1 = 0 given that -1/2 is a zero of f(x) = 4x^3 + 4x^2-x-1.

Mathematics
1 answer:
Sholpan [36]3 years ago
7 0

<u>Answer:</u>

The solution of  equation 4x^3 + 4x^2-x-1 = 0 given that -1/2 is a zero of f(x) = 4x^3 + 4x^2-x-1 is \frac{-1}{2} \text { and } \frac{1}{2} \text { and }-1

<u>Solution:</u>

Given, cubic equation 4 x^{3}+4 x^{2}-x-1=0

And \frac{-1}{2} is a zero of f(x)=4 x^{3}+4 x^{2}-x-1

We have to find the other two roots of the given quadratic equation.

Let the other two roots be a, b.

Now, we know that, sum of roots of cubic equation =\frac{-x^{2} \text { coefficient }}{x^{3} \text { coefficient }}

\text { Then, } \frac{-1}{2}+a+b=\frac{-4}{4} \rightarrow a+b=-1+\frac{1}{2} \rightarrow a+b=\frac{-1}{2} \rightarrow(1)

Now, product of roots of cubic equation =\frac{-\text { constant value }}{x^{3} \text { coefficient }}

\begin{array}{l}{\text { Then, } \frac{-1}{2} \times a \times b=\frac{-(-1)}{4} \rightarrow \frac{-1}{2} \times a b=\frac{1}{4}} \\\\ {\rightarrow a b=-2 \times \frac{1}{4} \rightarrow a b=\frac{-1}{2}}\end{array}

\text { Now we know that, }(a-b)^{2}=(a+b)^{2}-4 a b

substitute above value in this formula

(a-b)^{2}=\left(\frac{-1}{2}\right)^{2}-4 \times\left(\frac{-1}{2}\right)

(a-b)^{2}=1 / 4+2 \rightarrow(a-b)^{2}=\frac{2 \times 4+1}{4} \rightarrow(a-b)^{2}=\frac{9}{4} \rightarrow a-b=\frac{3}{2} \rightarrow(2)

Now, solve (1) and (2)

\begin{array}{l}{2 a=\frac{3-1}{2}} \\ {2 a=1} \\ {a=\frac{1}{2}}\end{array}

substitute "a" value in (1)

\frac{1}{2}+b= \frac{-1}{2} \rightarrow b= \frac{-1}{2} + \frac{-1}{2} \rightarrow b=-1

Hence, the roots of the given cubic equation are \frac{-1}{2} \text { and } \frac{1}{2} \text { and }-1

You might be interested in
How do you find the rate of change in a graph
Anni [7]
To find the unit rate, divide the numerator and denominator of the given rate by the denominator of the given rate
6 0
3 years ago
Read 2 more answers
Type the missing number in this sequence: 1, 2, 4, 8, , 32
vodka [1.7K]

Answer:

1,2,4,8,"16",32

Step-by-step explanation:

we are times by 2 on each one

7 0
3 years ago
Read 2 more answers
Write a linear function f with the values f(0)=−3 and f(7)=11<br><br> A function is f(x)=
kotegsom [21]
F(x)= 2x-3
f(0)=2•0-3=0-3=-3 ✔️
f(7)=2•7-3=14-3=11 ✔️
4 0
3 years ago
Which is equivalent to 3/8^1/4? 8^3/4<br> A.10<br> B.6<br> C.5<br> D.2
Contact [7]

Answer:

B I'm pretty sure..............

7 0
3 years ago
A cylinder shaped can needs to be constructed to hold 300 cubic centimeters of soup. The material for the sides of the can costs
oksano4ka [1.4K]

Answer:

Step-by-step explanation:

Cost = Area Cylinder body* cost * 0.03 cm^3 + Area of 2 lids*cost 0.06 of cm^3

Volume = 300 cm^3

Volume = Base *h  

Volume = pi * r^2 * h = 300

h = 300/(pi * r^2 )

Area material =  2*pi * r * h * 0.03 + 2 pi r^2 * 0.06

Area material = 0.06*pi * r * 300/(pi* r^2) + 0.12 * pi * r^2

dmaterial/dr = (-1)18 r^-2 + 0.12 pi * 2*r

dmaterial/dr = -18 r^-2 + 0.24 pi * r

The minimum occurs when the right side = 0

18/r^2 = 0.24 *pi r

18 = 0.24*pi * r^3

18/(0.24 * pi) = r^3

23.89 = r^3

cube root (23.89) = cuberoot(r^3)

r = 2.88 cm

h = 300/pi * r^2

h = 300/(3.14 * 2.88^2)

h = 11.52

This isn't much of a check but we can try it.

Volume = 3.14 * 2.88^2 * 11.52

Volume = 302.01 which considering all the rounding is pretty close.

Here's a graph that confirms my answer.

3 0
3 years ago
Other questions:
  • The volume of a cylinder is 108π cm³ and its height is 12 cm.
    7·1 answer
  • In this triangle, what is the value of x? Enter your answer, rounded to the nearest tenth, in the box. x = A right triangle with
    6·1 answer
  • Se vendieron para una función en el teatro 255 entradas a $130,antes del comienzo de la función,hubo 5 devoluciones,pero luego s
    12·1 answer
  • James drove 986 miles from Philadelphia to Orlando in 14.5 hours. He continued to drive at the same average speed and drove anot
    14·1 answer
  • Find the values of y which makes the expression (2y + 7) /(y2 - 2y - 15) undefined?
    15·1 answer
  • A flat rectangular piece of aluminum has a perimeter of 64 inches. The length is 8 inches longer than the width. Find the width.
    14·1 answer
  • What is 2x + 5 = 2x - 10
    11·2 answers
  • Help pls
    10·2 answers
  • (x+1)(6x-5) find the indefinite Integral
    14·1 answer
  • Use the method of undetermined coefficients to find the general solution to the de y′′−3y′ 2y=ex e2x e−x
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!