Here we have to get the
of the reaction at 520 K temperature.
The
of the reaction is 1.705 atm
We know the relation between
and
is
, where
= The equilibrium constant of the reaction in terms of partial pressure,
= The equilibrium constant of the reaction in terms of concentration and N = number of moles of gaseous products - Number of moles of gaseous reactants.
Now in this reaction, PCl₃ + Cl₂ ⇄ PCl₅
Thus number of moles of gaseous product is 1, and number of moles of gaseous reactants are 2. Thus N = |1 - 2| = 1 mole
The given value of
is 4.0×10⁻²
The molar gas constant, R = 0.082 L. Atm. mol⁻¹. K⁻¹ and temperature, T = 520 K.
On plugging the values in the equation we get,

Or,
= 1.705 atm
Thus, the
of the reaction is 1.705 atm
Assuming that the reaction from A and C to AC5 is only
one-step (or an elementary reaction) with a balanced chemical reaction of:
<span>A + 5 C ---> AC5 </span>
Therefore the formation constant can be easily calculated
using the following formula for formation constant:
Kf = product of products concentrations / product of reactants
concentration
<span>Kf = [AC5] / [A] [C]^5 </span>
---> Any coefficient from the balanced chemical
reaction becomes a power in the formula
Substituting the given values into the equation:
Kf = 0.100 M / (0.100 M) (0.0110 M)^5
Kf = 6,209,213,231
or in simpler terms
<span>Kf = 6.21 * 10^9 (ANSWER)</span>
Explanation:
thank you thank you thank you for the points
Answer: C
Explanation:
The one closest to the atomic center, there is a single 1s orbital that can hold 2 electrons. At the next energy level, there are four orbitals.
Answer:
By visiting other households with cats.
Explanation:
This will give Brian a variety of other houses and determine if it is truly cats or just alleries from other items. This is the most direct way to get Brian the answer he is looking for.