Answer:
The mixture contains 8.23 g of Ar
Explanation:
Let's solve this with the Ideal Gases Law
Total pressure of a mixture = (Total moles . R . T) / V
We convert T° from °C to K → 85°C + 273 = 358K
3.43 atm = (Moles . 0.082 L.atm/mol.K . 358K) / 6.47L
(3.43 atm . 6.47L) / (0.082 L.atm/mol.K . 358K) = Moles
0.756= Total moles from the mixture
Moles of Ar + Moles of H₂ = 0.756 moles
Moles of Ar + 1.10 g / 2g/mol = 0.756 moles
Moles of Ar = 0.756 moles - 0.55 moles H₂ → 0.206
We convert the moles to g → 0.206 mol . 39.95 g / 1 mol = 8.23 g
Answer:
2.30 × 10⁻⁶ M
Explanation:
Step 1: Given data
Concentration of Mg²⁺ ([Mg²⁺]): 0.039 M
Solubility product constant of Mg(OH)₂ (Ksp): 2.06 × 10⁻¹³
Step 2: Write the reaction for the solution of Mg(OH)₂
Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)
Step 3: Calculate the minimum [OH⁻] required to trigger the precipitation of Mg²⁺ as Mg(OH)₂
We will use the following expression.
Ksp = 2.06 × 10⁻¹³ = [Mg²⁺] × [OH⁻]²
[OH⁻] = 2.30 × 10⁻⁶ M
Answer:
I don't understand anything but thanks for the points
please say in English. I mean say properly the question.......
thank you
This family (ethane, propane, butane, etc) of materials is likely to have following set of properties.
- The alkanes are non- polar solvents.
- The alkanes are immiscible in water but freely miscible in other non-polar solvent .
- The alkanes are consisting of weak dipole dipole bonds can not breaks the strong hydrogen bond.
- The alkanes having only carbon (C) and hydrogen (H) atom which is bonded by a single bonds only.
- The alkanes posses weak force of attraction that is weak van der waals force of attraction.
The ethane, propane, butane, belong to alkanes family.The alkanes are also considers as saturated hudrocarbons. Ethane is found in gaseous stae Ethane is the second alkane followed by propane followed by butane.
learn about butane
brainly.com/question/14818671
#SPJ4