I think the best answer is D
The freezing point depression is a colligative property, which means that it depends on the number of particles of solute disolved in the solution.
When you have solutes that are ionic compounds they dissociate in water into ions, then the compound that dissociates more ions will produce more particles and will decrease the freezing point the most.
Given theses aqueous solutions Na2 CO3, Co Cl3, and Li NO3 you can predict the order of the freezing points.
First, write the dissociation equations>
Na2CO3 -> 2Na(+) + CO3 (2-) These are 3 ions: two of Na(+) and one of CO3(2-)
The number inside parenthesis are number of charge not number of molecules.
Co Cl3 -> Co(3+) + 3 Cl (1-) Those are 4 ions: one of Co (+) and three of Cl (-)
Li NO3 -> Li (+) + NO3 (-) those are two ions: one of Li (+) and one of NO3(-)
Then the ionic compound that dissociates into more ions give the solution with lower freezing point, and these is the rank from higher to lower freezing point:
Li NO3 > Na2 CO3 > Co Cl3.
Answer:
0.21 g
Explanation:
The equation of the reaction is;
NaCl(aq) + AgNO3(aq) -----> NaNO3(aq) + AgCl(s)
Number of moles of NaCl= 0.0860 g /58.5 g/mol = 0.00147 moles
Number of moles of AgNO3 = 30/1000 L × 0.050 M = 0.0015 moles
Since the reaction is 1:1, NaCl is the limiting reactant.
1 mole of NaCl yields 1 mole of AgCl
0.00147 moles of NaCl yields 0.00147 moles of AgCl
Mass of precipitate formed = 0.00147 moles of AgCl × 143.32 g/mol
= 0.21 g
Answer: negative acellaration or mass.
Explanation:
the first reason why is that i got that quistion right. and when objects are unbalanced it gives negative acellaration