1.5 ms⁻²
Explanation:
We understand that Force is also given as mass * acceleration;
F = Ma
If force is 6N and the mass is 4kg of the object, the a can be evaluated as follows;
6 = 4a
6/4 = a
1.5 = a
= 1.5m/s²
Use the chart to help you look carefully at the numbers and the volumes to figure the questions out hope this helps
In this reaction 50% of the compound decompose in 10.5 min thus, it is half life of the reaction and denoted by symbol
.
(a) For first order reaction, rate constant and half life time are related to each other as follows:

Thus, rate constant of the reaction is
.
(b) Rate equation for first order reaction is as follows:
![k=\frac{2.303}{t_{1/2}}log\frac{[A_{0}]}{[A_{t}]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt_%7B1%2F2%7D%7Dlog%5Cfrac%7B%5BA_%7B0%7D%5D%7D%7B%5BA_%7Bt%7D%5D%7D)
now, 75% of the compound is decomposed, if initial concentration
is 100 then concentration at time t
will be 100-75=25.
Putting the values,

On rearranging,

Thus, time required for 75% decomposition is 21 min.
Answer:
B. 1-Butene rightarrow (1) BH3: THF (2)H202, OH-
Explanation:
In the hydroboration of alkenes, an alkene is hydrated to form an alcohol with anti-Markovnikov orientation.
the reagent BH₃:THF is the way that borane is used in organic reactions. The BH₃ adds to the double bond of an alkene to form an alkyl borane. Peroxide hydrogen in basic medium oxidizes the alkyl borane to form an alcohol. Indeed, hydroboration-oxidation converts alkenes to alcohols by adding water through the double bond, with anti-Markovnikov orientation.
Answer: Gas. Gas vibrates and move freely at high speeds.
Explanation: