Answer:
6
Explanation:
FCC is face centered cubic lattice. In FCC structure, there are eight atoms at the eight corner of the cubic unit cell and one atom centered in each of the faces. FCC unit cells consist of four atoms, (8/8) at the corners and (6/2) in the faces.
Given that, Cu has FCC structure and it contains a vacancy at origin (0, 0, 0). And there is no other vacancy directly adjacent to the vacancy at the origin. So, all the adjacent positions contain Cu atoms. Hence, the total number of adjacent atoms of the vacancy at origin can jump into this vacancy.
the above FCC unit cell clearly indicates that there are six adjacent atoms adjacent to the vacancy at origin
So, the total number of adjacent atoms of the vacancy at origin can jump into this vacancy is 6.
The moles of gas in the bottle has been 0.021 mol.
The ideal gas has been given as the gas where there has been negligible amount of interatomic collisions. The ideal gas equation has been given as:

<h3>Computation for the moles of gas</h3>
The gi<em>ve</em>n gas has standard pressure, 
The volume of the gas has been, 
The temperature of the gas has been, 
Substituting the values for the moles of gas, <em>n:</em>
<em />
<em />
The moles of gas in the bottle has been 0.021 mol.
Learn more about ideal gas, here:
brainly.com/question/8711877
Explanation:
The reaction equation will be as follows.

Hence, moles of Na = moles of electron used
Therefore, calculate the number of moles of sodium as follows.
No. of moles = 
=
(as 1 kg = 1000 g)
= 195.65 mol
As, Q =
where F = Faraday's constant
= 
=
mol C
Relation between electrical energy and Q is as follows.
E = 
Hence, putting the given values into the above formula and then calculate the value of electricity as follows.
E = 
= 
= 
As 1 J =
kWh
Hence,
kWh
= 3.39 kWh
Thus, we can conclude that 3.39 kilowatt-hours of electricity is required in the given situation.
Answer:
No.
Explanation:
The average distance to the center is over 6300km.
If you would draw the Lewis structures of these atoms, you would see that A has 2 electron pairs and 2 lone electrons (that can bond). For B you’d see that you only have 1 electron that can form a bond. This means that 1 atom of A (2 lone electrons) can bond with 2 atoms of B. To know the kind of bond you have to know wether or not there will be a ‘donation’ of an electron from one atom to another. This happens when the number of electrons on one atoms is equal to the number of electrons another atom needs to reach the noble gas structure. As you can see, this is not the case here. This means that you get an AB2 structure with covalent character.