Answer:
this is you answer I hope it help you plz like it and rate it
Answer:
Mole fraction for C₂₂H₁₉Cl₂NO₃ = 0.0086
Explanation:
Mole fraction remains a sort of concentration. It indicates:
moles of solute / (moles of solute + moles of solvent)
Moles of solute / Total moles.
Solute: Cypermethrin → C₂₂H₁₉Cl₂NO₃
Solvent: Water (PM = 18g/mol)
We calculate moles from solvent: 1000g /18 g/mol = 55.5 moles
We calculate PM for C₂₂H₁₉Cl₂NO₃
12g/mol . 22 + 1g/mol . 19 + 35.45 g/mol . 2+ 14g/mol + 16g/mol . 3 = 416 g/m
Moles of solute: 200 g / 416g/mol = 0.481 moles
Total moles: 0.481 + 55.5 = 55.98 moles
Mole fraction for C₂₂H₁₉Cl₂NO₃ = 0.481 moles / 55.98 moles = 0.0086
Answer:
a. NaNO3 and CuCl2
Explanation:
The other 3 react as follows:
Ba(OH)2 and HNO3 ---> BaNO3 + H2O
CaCl2 + Na3PO4 ---> CaPO4 + NaCl
AgNO3 + HCl ---> AgCl + HNO3
Answer:
aldehyde
carbon-1
ketone
carbon-2
Explanation:
Monosaccharides are colorless crystalline solids that are very soluble in water. Moat have a swwet taste. D-Fructose is the sweetest monosaccharide.
In the open chain form, monosaaccharides have a carbonuyl group in one of their chains. If the carbonyl group is in the form of an aldehyde group, the monosaccharide is an aldose; if the carbonyl group is in the form of a ketone group, the monosaccharide is known as a ketose. glucose is an aldose while fructose is a ketose.
In D-glucose, there is an aldehyde functional group, and the carbonyl group is at carbon-1 when looking at the Fischer projection.
In D-fructose, there is a ketone functional group, and the carbonyl group is at carbon-2 when looking at the Fischer projection.