Answer:
When a Triangle is Dilated taking one of the vertices as the center of dilation
There are two Possibility, either Dilation factor will be (0<Dilation factor<1), or greater than 1.
1. When,0< Dilation Factor < 1
Size Of Preimage < Size of Image
2. When Dilation Factor > 1
Size Of Preimage > Size of Image
Step-by-step explanation:
Can you get a better shot of the problem?
Answer:
x = 4, y = -4
Step-by-step explanation:
9x + 3y = 24
3x + y = 8 divide both sides by 3
y = 8 - 3x subtract 3x from both sides
2y + 4x = 8
2(8 - 3x) + 4x = 8 replace y with 8 - 3x
16 - 6x + 4x = 8 distributive property
-6x + 4x = 8 - 16 subtract 16 from both sides
-2x = -8 divide both sides by -2
x = 4
y = 8 - 3x
y = 8 - 3(4) replace x with 4
y = 8 - 12
y = -4
Data? I need the data! Not trying to provoke, but in order to answer this I need data...
(p + q)⁵
(p + q)(p + q)(p + q)(p + q)(p + q)
{[p(p + q) + q(p + q)][p(p + q) + q(p + q)](p + q)}
{[p(p) + p(q) + q(p) + q(q)][p(p) + p(q) + q(p) + q(q)](p + q)}
(p² + pq + pq + q²)(p² + pq + pq + q²)(p + q)
(p² + 2pq + q²)(p² + 2pq + q²)(p + q)
{[p²(p² + 2pq + q²) + 2pq(p² + 2pq + q²) + q²(p² + 2pq + q²)](p + q)}
{[p²(p²) + p²(2pq) + p²(q²) + 2pq(p²) + 2pq(2pq) + 2pq(q²) + q²(p²) + q²(2pq) + q²(q²)](p + q)}
(p⁴ + 2p³q + p²q² + 2p³q + 4p²q² + 2pq³ + p²q² + 2pq³ + q⁴)(p + q)
(p⁴ + 2p³q + 2p³q + p²q² + 4p²q² + p²q² + 2pq³ + 2pq³ + q⁴)(p + q)
(p⁴ + 4p³q + 6p²q² + 4pq³ + q⁴)(p + q)
p⁴(p + q) + 4p³q(p + q) + 6p²q²(p + q) + 4pq³(p + q) + q⁴(p + q)
p⁴(p)+ p⁴(q) + 4p³q(p) + 4p³q(q) + 6p²q²(p) + 6p²q²(q) + 4pq³(p) + 4pq³(q) + q⁴(p) + q⁴(q)
p⁵ + p⁴q + 4p⁴q + 4p³q² + 6p³q² + 6p²q³ + 4p²q³ + 4pq⁴ + pq⁴ + q⁵
p⁵ + 5p⁴q + 10p³q² + 10p²q³ + 5pq⁴ + q⁵