Answer:
The solution is ![\frac{1}{10} * tan^{-1}[\frac{e^{2x}}{5} ] + C](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B10%7D%20%2A%20tan%5E%7B-1%7D%5B%5Cfrac%7Be%5E%7B2x%7D%7D%7B5%7D%20%5D%20%2B%20%20C)
Step-by-step explanation:
From the question
The function given is 
The indefinite integral is mathematically represented as

Now let 
=> 
=> 
So

![= \frac{1}{2} \frac{tan^{-1} [\frac{u}{5} ]}{5} + C](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cfrac%7Btan%5E%7B-1%7D%20%5B%5Cfrac%7Bu%7D%7B5%7D%20%5D%7D%7B5%7D%20%20%2B%20%20C)
Now substituting for u
![\frac{1}{10} * tan^{-1}[\frac{e^{2x}}{5} ] + C](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B10%7D%20%2A%20tan%5E%7B-1%7D%5B%5Cfrac%7Be%5E%7B2x%7D%7D%7B5%7D%20%5D%20%2B%20%20C)
The 8th character would be 58
In this section we are going to see how knowledge of some fairly simple graphs can help us graph some more complicated graphs. Collectively the methods we’re going to be looking at in this section are called transformations.
Vertical Shifts
The first transformation we’ll look at is a vertical shift.
For the trapezoid, the equation used to solve for the area is,
A = (0.5)(b₁ + b₂)(h)
where b₁ and b₂ are the measure of the bases and h is the height. Substituting the known values above,
1224 = (0.5)(70.5 + 65.5)(h)
h = 18
Thus, the height of the counter top is 18 inches.