A. The sound will decrease in volume
Answer:
80 ft/s
Explanation:
Use III equation of motion
V^2 = U^2 + 2g h
Here, U = 0, g = 32 ft/s^2, h = 100 ft
V^2 = 0 + 2 × 32 ×100
V^2 = 6400
V = 80 ft/s
Explanation:
Let magnitude of the two forces be x and y.
Resultant at right angle R1= √15N) and at
60 degrees be R2= √18N.
Now, R1 = √(x² + y²) = √15,
R2= √(x² + y² +2xycos50) = √18.
So x² + y² = 15,
and x² + y² + 1.29xy = 18,
therefore 1.29xy = 3,
y = 3/1.29x.
y = 2.33/x
Now, x2 + (2.33/x)2 = 15,
x² + 5.45/x² = 15
multiply through by x²
x⁴ + 5.45 = 15x²
x⁴ - 15x2 + 5.45 = 0
Now find the roots of the equation, and later y. The two values of x will correspond to the
magnitudes of the two vectors.
Good luck
The force is opposite to the displacement
Answer:
The astronaut's mass is 16 kg.
Explanation:
Mass can be defined as a measure of the amount of matter an object or a body comprises of. The standard unit of measurement of the mass of an object or a body is kilograms.
Irrespective of the location of an object or a body at a given moment in time, the mass (amount of matter that they're made up of) is constant. This ultimately implies that, whether you're in the moon, space, earth or any other place, your mass remains the same (constant).
Therefore, if an astronaut has a mass of 16 Kg on Earth, his mass on the moon and on the space station would remain the same, as his original mass of 16 Kg because mass is indestructible.