Let car A's starting position be the origin, so that its position at time <em>t</em> is
A: <em>x</em> = (40 m/s) <em>t</em>
and car B has position at time <em>t</em> of
B: <em>x</em> = 100 m - (60 m/s) <em>t</em>
<em />
They meet when their positions are equal:
(40 m/s) <em>t</em> = 100 m - (60 m/s) <em>t</em>
(100 m/s) <em>t</em> = 100 m
<em>t</em> = (100 m) / (100 m/s) = 1 s
so the cars meet 1 second after they start moving.
They are 100 m apart when the difference in their positions is equal to 100 m:
(40 m/s) <em>t</em> - (100 m - (60 m/s) <em>t</em>) = 100 m
(subtract car B's position from car A's position because we take car A's direction to be positive)
(100 m/s) <em>t</em> = 200 m
<em>t</em> = (200 m) / (100 m/s) = 2 s
so the cars are 100 m apart after 2 seconds.
The question is incomplete. The complete question is :
To measure the effective coefficient of friction in a bone joint, a healthy joint (and its immediate surroundings) can be removed from a fresh cadaver. The joint is inverted, and a weight is used to apply a downward force F⃗ d on the head of the femur into the hip socket. Then, a horizontal force F⃗ h is applied and increased in magnitude until the femur head rotates clockwise in the socket. The joint is mounted in such a way that F⃗ h will cause clockwise rotation, not straight-line motion to the right. The friction force will point in a direction to oppose this rotation.
Draw vectors indicating the normal force n⃗ (magnitude and direction) and the frictional force f⃗ f (direction only) acting on the femur head at point A.
Assume that the weight of the femur is negligible compared to the applied downward force.
Draw the vectors starting at the black dot. The location, orientation and relative length of the vectors will be graded
Solution :
The normal force represented by N is equal to the downward force,
which is equal in magnitude but it is opposite in direction.
Also the frictional force acts always to oppose the motion because the bone starts moving in a clockwise direction. The frictional force that will be applied to the right direction so that the movement or the rotation at A is opposed.
Answer:
400 N
Explanation:
By the law of friction,

is the maximum frictional force,
is the coefficient of friction and
is the reaction on the refrigerator. On a horizontal surface, the reaction is equal to the weight of the refrigerator.


While not moving, the fricition on the refrigerator is static friction. So, 

This is the maximum frictional force and is more than the applied horizontal force of 400 N. Frictional force cannot be more than the applied force, else it would actually pull the refrigerator backwards (a strange thing, if it were to happen). It is equal to the extent of the applied force because the applied force is not enough to overcome the maximum.
Hence the frictional force is 400 N.
PS: Note that we do not use the coefficient of kinetic friction because applied force could not overcome the static friction.
It is called a homologous chromosome meaning it carries the same gene
A sphere has reflection symmetry across any plane through its center.