Answer:
(a) The probability that a single randomly selected value lies between 158.6 and 159.2 is 0.004.
(b) The probability that a sample mean is between 158.6 and 159.2 is 0.0411.
Step-by-step explanation:
Let the random variable <em>X</em> follow a Normal distribution with parameters <em>μ</em> = 155.4 and <em>σ</em> = 49.5.
(a)
Compute the probability that a single randomly selected value lies between 158.6 and 159.2 as follows:

*Use a standard normal table.
Thus, the probability that a single randomly selected value lies between 158.6 and 159.2 is 0.004.
(b)
A sample of <em>n</em> = 246 is selected.
Compute the probability that a sample mean is between 158.6 and 159.2 as follows:

*Use a standard normal table.
Thus, the probability that a sample mean is between 158.6 and 159.2 is 0.0411.
There would be 7 dimes and 18 nickels
G(2) = -4(2) = -8
f(g(2)) = (-8)^2 = 64
answer
64
Answer:
a) v = 12.21m/s
a = 4.07 m/s²
b)v = 11.24m/s
a = 3.75 m/s²
Step-by-step explanation:
a) Dividing the moviment into two parts:
I - With acceleration
v = v₀ + at
s = s₀ + v₀t + at²/2
- v₀ = 0
- s₀ = 0
- a = ?
- v = ?
- t = 3s
- s = x
v = v₀ + at
v = 3a ⇒ a = v/3
s = s₀ + v₀t + at²/2
x = v/3.3²/2
x = 3v/2
II - Uniform
s = s₀ + vt
s = 100
s₀ = x
v = v
t = 9.69 - 3 = 6.69s
s = s₀ + vt
100 = x + v*6.69
100 = x + 6.69v
As x = 3v/2
100 = 3v/2 + 6.69v
100 = 1.5v + 6.69v
100 = 8.19v
v = 12.21m/s
a = v/3 = 4.07 m/s²
b) Dividing the moviment into two parts:
I - With acceleration
v = v₀ + at
s = s₀ + v₀t + at²/2
- v₀ = 0
- s₀ = 0
- a = ?
- v = ?
- t = 3s
- s = x
v = v₀ + at
v = 3a ⇒ a = v/3
s = s₀ + v₀t + at²/2
x = v/3.3²/2
x = 3v/2
II - Uniform
s = s₀ + vt
s = 200
s₀ = x
v = v
t = 19.30 - 3 = 16.30s
s = s₀ + vt
200 = x + v*16.3
100 = x + 16.3v
As x = 3v/2
200 = 3v/2 + 16.3v
200 = 1.5v + 16.3v
200 = 17.8v
v = 11.24m/s
a = v/3 = 3.75 m/s²
Answer:
The number of miles/the number of hours
Step-by-step explanation:
If the number of hours is not equal to 1, multiply the numerator and denominator by the inverse of the number of hours.
For example, 10 (miles)/2 (hours)
The inverse of 2 is 1/2, so --> the new equation is 10/2 * 1/2 / 1/2 or
10* 1/2 and 2 * 1/2
When multiplied out, this leads to 5/1 or 5 miles per hour