X -length
y wide
x=4y
2x+2y=12,5
x=4y
8y+2y=12,5
x=4y
y=1,25
x=5
y=1,25
area
x*y=5*1,25=6,25
Answer:
c
Step-by-step explanation:
the function (x) = -3x+2 can be obtained by :
* stretching the function (x)=x in the y-axis by 3 units gives 3x
* then reflecting about x-axis gives -3x
* finally shifting it up by 2 units gives -3x+2
so the parent function is f(x) = x
Expand the expression as
(<em>s</em> + 1)³/<em>s</em> ⁵ = (<em>s</em> ³ + 3<em>s</em> ² + 3<em>s</em> + 1)/<em>s</em> ⁵
… = 1/<em>s</em> ² + 3/<em>s</em> ³ + 3/<em>s</em> ⁴ + 1/<em>s</em> ⁵
Then taking the inverse transform, you get
LT⁻¹ [1/<em>s</em> ² + 3/<em>s</em> ³ + 3/<em>s</em> ⁴ + 1/<em>s</em> ⁵]
… = LT⁻¹ [1/<em>s</em> ²] + LT⁻¹ [3/<em>s</em> ³] + LT⁻¹ [3/<em>s</em> ⁴] + LT⁻¹ [1/<em>s</em> ⁵]
… = LT⁻¹ [1!/<em>s</em> ²] + 3/2 LT⁻¹ [2!/<em>s</em> ³] + 1/2 LT⁻¹ [3!/<em>s</em> ⁴] + 1/24 LT⁻¹ [4!/<em>s</em> ⁵]
… = <em>t</em> + 3/2 <em>t</em> ² + 1/2 <em>t</em> ³ + 1/24 <em>t</em> ⁴
Answer:
For this case if we want to conclude that the sample does not come from a normally distributed population we need to satisfy the condition that the sample size would be large enough in order to use the central limit theoream and approximate the sample mean with the following distribution:

For this case the condition required in order to consider a sample size large is that n>30, then the best solution would be:
n>= 30
Step-by-step explanation:
For this case if we want to conclude that the sample does not come from a normally distributed population we need to satisfy the condition that the sample size would be large enough in order to use the central limit theoream and approximate the sample mean with the following distribution:

For this case the condition required in order to consider a sample size large is that n>30, then the best solution would be:
n>= 30