Answer:
25/138
Step-by-step explanation:
1 Convert 4\frac{3}{5}4
5
3
  to improper fraction. Use this rule: a \frac{b}{c}=\frac{ac+b}{c}a
c
b
 =
c
ac+b
 .
\frac{1}{-(\frac{4\times 5+3}{5})}(-\frac{2}{6}-\frac{2}{4})
−(
5
4×5+3
 )
1
 (−
6
2
 −
4
2
 )
2 Simplify  4\times 54×5  to  2020.
\frac{1}{-(\frac{20+3}{5})}(-\frac{2}{6}-\frac{2}{4})
−(
5
20+3
 )
1
 (−
6
2
 −
4
2
 )
3 Simplify  20+320+3  to  2323.
\frac{1}{-(\frac{23}{5})}(-\frac{2}{6}-\frac{2}{4})
−(
5
23
 )
1
 (−
6
2
 −
4
2
 )
4 Simplify  \frac{2}{6}
6
2
   to  \frac{1}{3}
3
1
 .
\frac{1}{-(\frac{23}{5})}(-\frac{1}{3}-\frac{2}{4})
−(
5
23
 )
1
 (−
3
1
 −
4
2
 )
5 Simplify  \frac{2}{4}
4
2
   to  \frac{1}{2}
2
1
 .
\frac{1}{-(\frac{23}{5})}(-\frac{1}{3}-\frac{1}{2})
−(
5
23
 )
1
 (−
3
1
 −
2
1
 )
6 Find the Least Common Denominator (LCD) of \frac{1}{3},\frac{1}{2}
3
1
 ,
2
1
 . In other words, find the Least Common Multiple (LCM) of 3,23,2.
LCD = 66
7 Make the denominators the same as the LCD.
-\frac{1\times 2}{3\times 2}-\frac{1\times 3}{2\times 3}−
3×2
1×2
 −
2×3
1×3
 
8 Simplify. Denominators are now the same.
-\frac{2}{6}-\frac{3}{6}−
6
2
 −
6
3
 
9 Join the denominators.
\frac{-2-3}{6}
6
−2−3
 
10 Simplify  -\frac{1}{3}-\frac{1}{2}−
3
1
 −
2
1
   to  -\frac{5}{6}−
6
5
 .
\frac{1}{-(\frac{23}{5})}\times \frac{-5}{6}
−(
5
23
 )
1
 ×
6
−5
 
11 Move the negative sign to the left.
-\frac{1}{\frac{23}{5}}\times \frac{-5}{6}−
5
23
 
1
 ×
6
−5
 
12 Invert and multiply.
-\frac{5}{23}\times \frac{-5}{6}−
23
5
 ×
6
−5
 
13 Use this rule: \frac{a}{b} \times \frac{c}{d}=\frac{ac}{bd}
b
a
 ×
d
c
 =
bd
ac
 .
-\frac{5\times -5}{23\times 6}−
23×6
5×−5
 
14 Simplify  5\times -55×−5  to  -25−25.
-\frac{-25}{23\times 6}−
23×6
−25
 
15 Simplify  23\times 623×6  to  138138.
-\frac{-25}{138}−
138
−25
 
16 Move the negative sign to the left.
-(-\frac{25}{138})−(−
138
25
 )
17 Remove parentheses.
\frac{25}{138}
138
25