Answer:
148°
Step-by-step explanation:
The measure of the intercepted arc QN is twice the measure of inscribed angle QNT.
arc QN = 2(74°) = 148°
_____
<em>Comment on the question and answer</em>
Your description "on the circle between points Q and N" is ambiguous. You used the same description for both points P and R. The interpretation we used is shown in the attachment. If point P is on the long arc NQ, then the measure of arc QPN will be the difference between 148° and 360°, hence 212°. You need to choose the answer that matches the diagram you have.
__
We call angle QNT an "inscribed angle" because it is a degenerate case of an inscribed angle. The usual case has the vertex of the angle separate from the ends of the arc it intercepts. In the case of a tangent meeting a chord, the vertex is coincident with one of the ends of the intercepted arc. The relation between angle measure and arc measure remains the same: 1 : 2.
I would find the area of the shape as if it were a rectangle (5x9) and then subtract the area of two triangles (1/2x2x2.5)
Given:
Polynomials
To find:
Monomial of 2nd degree with leading coefficient 3
Solution:
Monomial is an algebraic expression with only one term.
Option A: 
It is not a monomial because it have 2 terms.
It is not true.
Option B:
It is not a monomial because it have 2 terms.
It is not true.
Option C: 
It have one term only. So, it is a monomial.
Degree means highest power. So degree = 2
Leading coefficient means the value before variable.
Leading coefficient = 3
It is true.
Option D: 
It have one term only. So, it is a monomial.
Degree means highest power. So degree = 3
It is not true.
Therefore
is a monomial of 2nd degree with a leading coefficient of 3.
The doctor would have 72 patients each week. Meaning 3744 each year.