Answer:
Explanation:
The genes in DNA encode protein molecules, which are the "workhorses" of the cell, carrying out all the functions necessary for life. For example, enzymes, including those that metabolize nutrients and synthesize new cellular constituents, as well as DNA polymerases and other enzymes that make copies of DNA during cell division, are all proteins.
In the simplest sense, expressing a gene means manufacturing its corresponding protein, and this multilayered process has two major steps. In the first step, the information in DNA is transferred to a messenger RNA (mRNA) molecule by way of a process called transcription. During transcription, the DNA of a gene serves as a template for complementary base-pairing, and an enzyme called RNA polymerase II catalyzes the formation of a pre-mRNA molecule, which is then processed to form mature mRNA (Figure 1). The resulting mRNA is a single-stranded copy of the gene, which next must be translated into a protein molecule.
<h3><u>Answer;</u></h3>
ATP and NADPH that were supplied through the light reactions
<h3><u>Explanation</u>;</h3>
- <em><u>Calvin cycle reaction is the portion of photosynthesis that takes place in the stroma of chloroplasts and can occur in the dark; it uses the products of the light reactions to reduce CO2 to a carbohydrate.</u></em>
- The Calvin cycle is divided into three portions: CO2 fixation, CO2 reduction, and regeneration of RuBP. Because five G3P are needed to re-form three RuBP, it takes three turns of the cycle to have a net gain of one G3P. Two G3P molecules are needed to form glucose.