Step-by-step explanation:
x-5x-6=0
x-5x=6+0
4x=6
x=6
4
x=3
2
<h2>this may help you</h2>
Answer:
A
Step-by-step explanation:
We are given that:

And we want to find:

Remember that tangent and cotangent are co-functions. In other words, they follow the cofunction identities:

Therefore, since tan(θ) = 1.3 and cot(90° - θ) = tan(θ), then cot(90° - θ) must also be 1.3.
Our answer is A.
So if you want to add
we distribute
a(b+c)=ab+ac so
-2(m+n-4)=-2m-2n+8
5(-2m+2n)=-10m+10n
n(m+4n-5)=mn+4n^2-5n
so total we ahve
-2m-2n+8-10m+10n+mn+4n^2-5n
group like terms
4n^2+-2m-10m-2n+10n-5n+mn+8
add like temrs
4n^2-12m+3n+mn+8
Answer:
5
Step-by-step explanation:

Explanation
![9-\sqrt[]{-64}](https://tex.z-dn.net/?f=9-%5Csqrt%5B%5D%7B-64%7D)
Step 1
Let's remember that
A complex number is an object of the form

where a and b are real numbers and
![\begin{gathered} i^2=-1 \\ i=\sqrt[]{-1} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20i%5E2%3D-1%20%5C%5C%20i%3D%5Csqrt%5B%5D%7B-1%7D%20%5Cend%7Bgathered%7D)
so
![\begin{gathered} 9-\sqrt[]{-64} \\ 9-\sqrt[]{-1\cdot64} \\ 9-\sqrt[]{-1}\sqrt[]{64} \\ 9-8\sqrt[]{-1} \\ 9-8i \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%209-%5Csqrt%5B%5D%7B-64%7D%20%5C%5C%209-%5Csqrt%5B%5D%7B-1%5Ccdot64%7D%20%5C%5C%209-%5Csqrt%5B%5D%7B-1%7D%5Csqrt%5B%5D%7B64%7D%20%5C%5C%209-8%5Csqrt%5B%5D%7B-1%7D%20%5C%5C%209-8i%20%5Cend%7Bgathered%7D)
therefore, the answer is

I hope this helps you