Treat

as the boundary of the region

, where

is the part of the surface

bounded by

. We write

with

.
By Stoke's theorem, the line integral is equivalent to the surface integral over

of the curl of

. We have

so the line integral is equivalent to


where

is a vector-valued function that parameterizes

. In this case, we can take

with

and

. Then

and the integral becomes


<span />
Given Info: "The dashed triangle is the image of the solid triangle"
So the "before" is the large solid triangle and the "after" is the smaller dashed triangle.
The horizontal side of the solid triangle is 15 units. The corresponding side for the dashed triangle is 3 units. Dividing the two values gives: 3/15 = 1/5 = 0.2
Make this value negative. The reason why is due to the fact that we have a sort of reflection going on as we're scaling down the figure.
So the final answer is -0.2
Answer:
a) 90 stamps
b) 108 stamps
c) 333 stamps
Step-by-step explanation:
Whenever you have ratios, just treat them like you would a fraction! For example, a ratio of 1:2 can also look like 1/2!
In this context, you have a ratio of 1:1.5 that represents the ratio of Canadian stamps to stamps from the rest of the world. You can set up two fractions and set them equal to each other in order to solve for the unknown number of Canadian stamps. 1/1.5 is representative of Canada/rest of world. So is x/135, because you are solving for the actual number of Canadian stamps and you already know how many stamps you have from the rest of the world. Set 1/1.5 equal to x/135, and solve for x by cross multiplying. You'll end up with 90.
Solve using the same method for the US! This will look like 1.2/1.5 = x/135. Solve for x, and get 108!
Now, simply add all your stamps together: 90 + 108 + 135. This gets you a total of 333 stamps!
Answer:
The test statistic = -0.93
Step-by-step explanation:
The test statistic is given by the formula
z = (X₁ - X₂) ÷ √(σₓ₁² + σₓ₂²)
where X₁ = proportion of data of South Korean tourists = (57/134) = 0.425
X₂ = proportion of other country tourists = (72/150) = 0.48
σₓ₁ = standard error in data 1 = √[p(1-p)/n]
= √(0.425 × 0.575/134) = 0.0427
σₓ₂ = standard error in data 2 = √[p(1-p)/n]
= √(0.48 × 0.52/150) = 0.0408
z = (X₁ - X₂) ÷ √(σₓ₁² + σₓ₂²)
z = (0.425 - 0.48) ÷ √(0.0427² + 0.0408²)
z = -0.055 ÷ 0.0590586996
z = -0.9313
Hope this Helps!!!
The truck is 171.2%. if you calculate the percentage of 160 and add them together, you will get 171.2