Start on the left side.<span><span><span>−<span>cot<span>(t)</span></span></span>+<span><span>sin<span>(t)</span></span><span>1<span>−<span>cos<span>(t)</span></span></span></span></span></span><span><span>-<span>cott</span></span>+<span><span>sint</span><span>1<span>-<span>cost</span></span></span></span></span></span>Multiply <span><span><span>sin<span>(t)</span></span><span>1<span>−<span>cos<span>(t)</span></span></span></span></span><span><span>sint</span><span>1<span>-<span>cost</span></span></span></span></span> by <span><span><span>1+<span>cos<span>(t)</span></span></span><span>1+<span>cos<span>(t)</span></span></span></span><span><span>1+<span>cost</span></span><span>1+<span>cost</span></span></span></span>.<span><span><span>−<span>cot<span>(t)</span></span></span>+<span><span><span>sin<span>(t)</span></span><span>1<span>−<span>cos<span>(t)</span></span></span></span></span><span><span>1+<span>cos<span>(t)</span></span></span><span>1+<span>cos<span>(t)</span></span></span></span></span></span><span><span>-<span>cott</span></span>+<span><span><span>sint</span><span>1<span>-<span>cost</span></span></span></span><span><span>1+<span>cost</span></span><span>1+<span>cost</span></span></span></span></span></span>Combine.<span><span>−<span>cot<span>(t)</span></span></span>+<span><span><span>sin<span>(t)</span></span><span>(<span>1+<span>cos<span>(t)</span></span></span>)</span></span><span>(<span>1<span>−<span>cos(t</span></span></span></span></span></span>−<span><span>cot<span>(t)</span></span>+<span><span><span>sin<span>(t)</span></span>+<span><span>sin<span>(t)</span></span><span>cos<span>(t)</span></span></span></span><span><span>(<span>1<span>−<span>cos<span>(t)</span></span></span></span>)</span><span>(<span>1+<span>cos<span>(t)</span></span></span>)</span></span></span></span><span>-<span>cott</span></span>+<span><span><span>sint</span>+<span><span>sint</span><span>cost</span></span></span><span><span>1<span>-<span>cost</span></span></span><span>1+<span>cost</span></span></span></span><span><span>))</span><span>(<span>1+<span>cos<span>(t)</span></span></span>)</span></span>− <span><span><span>cot<span>(t)</span></span>+<span><span><span>sin<span>(t)</span></span>+<span><span>sin<span>(t)</span></span><span>cos<span>(t)</span></span></span></span><span>1<span>−<span>cos2</span><span>(t)</span></span></span></span></span><span><span>-<span>cott</span></span>+<span><span><span>sint</span>+<span><span>sint</span><span>cost</span></span></span><span>1<span>-<span>cos2</span>t</span></span></span></span></span>Apply pythagorean identity.<span><span><span>−<span>cot<span>(t)</span></span></span>+<span><span><span>sin<span>(t)</span></span>+<span><span>sin<span>(t)</span></span><span>cos<span>(t)</span></span></span></span><span><span>sin2</span><span>(t)</span></span></span></span><span><span>-<span>cott</span></span>+<span><span><span>sint</span>+<span><span>sint</span><span>cost</span></span></span><span><span>sin2</span>t</span></span></span></span>Write <span><span>cot<span>(t)</span></span><span>cott</span></span> in sines and cosines using the quotient identity.<span><span><span>−<span><span>cos<span>(t)</span></span><span>sin<span>(t)</span></span></span></span>+<span><span><span>sin<span>(t)</span></span>+<span><span>sin<span>(t)</span></span><span>cos<span>(t)</span></span></span></span><span><span>sin2</span><span>(t)</span></span></span></span><span><span>-<span><span>cost</span><span>sint</span></span></span>+<span><span><span>sint</span>+<span><span>sint</span><span>cost</span></span></span><span><span>sin2</span>t</span></span></span></span>Simplify.1<span><span>sin<span>(t)</span></span><span>1<span>sint</span></span></span>Rewrite <span><span>1<span>sin<span>(t)</span></span></span><span>1<span>sint</span></span></span> as <span><span>csc<span>(t)</span></span><span>csct</span></span>.<span><span>csc<span>(t)</span></span><span>csct</span></span>Because the two sides have been shown to be equivalent, the equation is an identity.<span><span><span><span>−<span>cot<span>(t)</span></span></span>+<span><span>sin<span>(t)</span></span><span>1<span>−<span>cos<span>(t)</span></span></span></span></span></span>=<span>csc<span>(t)</span></span></span><span><span><span>-<span>cott</span></span>+<span><span>sint</span><span>1<span>-<span>cost</span></span></span></span></span>=<span>csct</span></span></span> is an <span>identity </span>
Make sure you go ahead and plot your point on the graph that you are using dilation means the graph got smaller then the original graph so starting from your original point your going to rotate it on the graph to your new point which is 1/2
Area is pi times r squared. I don't know how to write that on the keyboard. Take your pi(3.142) times the radius(6.2)squared. Pemdas tell us to do exponents first, so 6.2 squared is 38.44. To square a number, just multiply it times itself. So now, we have pi(3.142) times the squared radius(38.44). So, 3.142X38.44=
120.778 Second place is seven followed by eight. Round up. 120.78