Answer:
(C)x=11.6, y=23.2
Step-by-step explanation:
Using Theorem of Intersecting Secant and Tangent
Applying this theorem in the diagram, we have:


Next, we apply Theorem of Intersecting Chords
PV X VQ=SV X VR
4 X x= 2 X y
Recall earlier we got: x=11.6
2y=4 X 11.6
2y=46.4
Divide both sides by 2
y=46.4/2=23.2
Therefore: x=11.6, y=23.2
Answer:
The difference in the areas of the cross-sections is 20 m².
Step-by-step explanation:
^^^
Answer:
x = 5/39
, y = 539/39
Step-by-step explanation:
Solve the following system:
{y - 2.5 x = 13.5
12.25 x - y = -12.25
In the first equation, look to solve for y:
{y - 2.5 x = 13.5
12.25 x - y = -12.25
y - 2.5 x = y - (5 x)/2 and 13.5 = 27/2:
y - (5 x)/2 = 27/2
Add (5 x)/2 to both sides:
{y = 1/2 (5 x + 27)
12.25 x - y = -12.25
Substitute y = 1/2 (5 x + 27) into the second equation:
{y = 1/2 (5 x + 27)
1/2 (-5 x - 27) + 12.25 x = -12.25
(-5 x - 27)/2 + 12.25 x = 12.25 x + (-(5 x)/2 - 27/2) = 9.75 x - 27/2:
{y = 1/2 (5 x + 27)
9.75 x - 27/2 = -12.25
In the second equation, look to solve for x:
{y = 1/2 (5 x + 27)
9.75 x - 27/2 = -12.25
9.75 x - 27/2 = (39 x)/4 - 27/2 and -12.25 = -49/4:
(39 x)/4 - 27/2 = -49/4
Add 27/2 to both sides:
{y = 1/2 (5 x + 27)
(39 x)/4 = 5/4
Multiply both sides by 4/39:
{y = 1/2 (5 x + 27)
x = 5/39
Substitute x = 5/39 into the first equation:
{y = 539/39
x = 5/39
Collect results in alphabetical order:
Answer: {x = 5/39
, y = 539/39
Answer:
y = 5x+15
Step-by-step explanation:
The cost per calculator is 5
The shipping cost is 15
Let y = total cost
Let x = number of calculators
y = 5x+15
In this problem, you have to find the y- intercept of

. I graphed mine into a graphing calculator. An algebraic way to find it is to input x=0 in the function. The y-intercept is 5. You can see the y-intercept for the new one is -2. That means we shifted the graph down 7 units. (Vertical Shift down 7)
k=-7