Answer:

Step-by-step explanation:
<u>Angles in a Circle</u>
An exterior angle of a circle is an angle whose vertex is outside a circle and the sides of the angle are secants or tangents of the circle.
Segments AE and DE are secants of the given circle. They form an exterior angle called AED.
The measure of an exterior angle is equal to half the difference of the measure of their intercepted arcs.
Intercepted arcs in the given circle are AD=113° and BC=48°. The exterior angle is:



Part A: f(t) = t² + 6t - 20
u = t² + 6t - 20
+ 20 + 20
u + 20 = t² + 6t
u + 20 + 9 = t² + 6t + 9
u + 29 = t² + 3t + 3t + 9
u + 29 = t(t) + t(3) + 3(t) + 3(3)
u + 29 = t(t + 3) + 3(t + 3)
u + 29 = (t + 3)(t + 3)
u + 29 = (t + 3)²
- 29 - 29
u = (t + 3)² - 29
Part B: The vertex is (-3, -29). The graph shows that it is a minimum because it shows that there is a positive sign before the x²-term, making the parabola open up and has a minimum vertex of (-3, -29).
------------------------------------------------------------------------------------------------------------------
Part A: g(t) = 48.8t + 28 h(t) = -16t² + 90t + 50
| t | g(t) | | t | h(t) |
|-4|-167.2| | -4 | -566 |
|-3|-118.4| | -3 | -364 |
|-2| -69.6 | | -2 | -194 |
|-1| -20.8 | | -1 | -56 |
|0 | -28 | | 0 | 50 |
|1 | 76.8 | | 1 | 124 |
|2 | 125.6| | 2 | 166 |
|3 | 174.4| | 3 | 176 |
|4 | 223.2| | 4 | 154 |
The two seconds that the solution of g(t) and h(t) is located is between -1 and 4 seconds because it shows that they have two solutions, making it between -1 and 4 seconds.
Part B: The solution from Part A means that you have to find two solutions in order to know where the solutions of the two functions are located at.
answer:
4(2+x) and 8 + 4x
since she memorized those scales for EACH of those four lessons, the answer would be that.
It's a parabolic curve, so quadratic is best