Answer:
- (x-4.5)^2 +(y +5)^2 = 30.25
- x = (1/8)y^2 +(1/2)y +(1/2)
- y^2/36 -x^2/64 = 1
- x^2/16 +y^2/25 = 1
Step-by-step explanation:
1. Complete the square for both x and y by adding a constant equal to the square of half the linear term coefficient. Subtract 15, and rearrange to standard form.
(x^2 -9x +4.5^2) +(y^2 +10y +5^2) = 4.5^2 +5^2 -15
(x -4.5)^2 +(y +5)^2 = 30.25 . . . . . write in standard form
Important features: center = (4.5, -5); radius = 5.5.
__
2. To put this in the form x=f(y), we need to add 8x, then divide by 8.
x = (1/8)y^2 +(1/2)y +(1/2)
Important features: vertex = (0, -2); focus = (2, -2); horizontal compression factor = 1/8.
__
3. We want y^2/a^2 -x^2/b^2 = 1 with a=36 and b=(36/(3/4)^2) = 64:
y^2/36 -x^2/64 = 1
__
4. In the form below, "a" is the semi-axis in the x-direction. Here, that is 8/2 = 4. "b" is the semi-axis in the y-direction, which is 5 in this case. We want x^2/a^2 +y^2/b^2 = 1 with a=4 and b=5.
x^2/16 +b^2/25 = 1
_____
The first attachment shows the circle and parabola; the second shows the hyperbola and ellipse.
Answer: 3
x
−
2
y
−
15
=
0
Explanation:
We know that,
the slope of the line
a
x
+
b
y
+
c
=
0
is
m
=
−
a
b
∴
The slope of the line
2
x
+
3
y
=
9
is
m
1
=
−
2
3
∴
The slope of the line perpendicular to
2
x
+
3
y
=
9
is
m
2
=
−
1
m
1
=
−
1
−
2
3
=
3
2
.
Hence,the equn.of line passing through
(
3
,
−
3
)
and
m
2
=
3
2
is
y
−
(
−
3
)
=
3
2
(
x
−
3
)
y
+
3
=
3
2
(
x
−
3
)
⇒
2
y
+
6
=
3
x
−
9
⇒
3
x
−
2
y
−
15
=
0
Note:
The equn.of line passing through
A
(
x
1
,
y
1
)
and
with slope
m
is
y
−
y
1
=
m
(
x
−
x
1
)3
x
−
2
y
−
15
=
0
Explanation:
We know that,
the slope of the line
a
x
+
b
y
+
c
=
0
is
m
=
−
a
b
∴
The slope of the line
2
x
+
3
y
=
9
is
m
1
=
−
2
3
∴
The slope of the line perpendicular to
2
x
+
3
y
=
9
is
m
2
=
−
1
m
1
=
−
1
−
2
3
=
3
2
.
Hence,the equn.of line passing through
(
3
,
−
3
)
and
m
2
=
3
2
is
y
−
(
−
3
)
=
3
2
(
x
−
3
)
y
+
3
=
3
2
(
x
−
3
)
⇒
2
y
+
6
=
3
x
−
9
⇒
3
x
−
2
y
−
15
=
0
Note:
The equn.of line passing through
A
(
x
1
,
y
1
)
and
with slope
m
is
y
−
y
1
=
m
(
x
−
Explanation:
the equation of a line in
slope-intercept form
is.
∙
x
y
=
m
x
+
b
where m is the slope and b the y-intercept
rearrange
2
x
+
3
y
=
9
into this form
⇒
3
y
=
−
2
x
+
9
⇒
y
=
−
2
3
x
+
3
←
in slope-intercept form
with slope m
=
−
2
3
Given a line with slope then the slope of a line
perpendicular to it is
∙
x
m
perpendicular
=
−
1
m
⇒
m
perpendicular
=
−
1
−
2
3
=
3
2
⇒
y
=
3
2
x
+
b
←
is the partial equation
to find b substitute
(
3
,
−
3
)
into the partial equation
−
3
=
9
2
+
b
⇒
b
=
−
6
2
−
9
2
=
−
15
2
⇒
y
=
3
2
x
−
15
2
←
equation of perpendicular lineExplanation:
the equation of a line in
slope-intercept form
is.
∙
x
y
=
m
x
+
b
where m is the slope and b the y-intercept
rearrange
2
x
+
3
y
=
9
into this form
⇒
3
y
=
−
2
x
+
9
⇒
y
=
−
2
3
x
+
3
←
in slope-intercept form
with slope m
=
−
2
3
Given a line with slope then the slope of a line
perpendicular to it is
∙
x
m
perpendicular
=
−
1
m
⇒
m
perpendicular
=
−
1
−
2
3
=
3
2
⇒
y
=
3
2
x
+
b
←
is the partial equation
to find b substitute
(
3
,
−
3
)
into the partial equation
−
3
=
9
2
+
b
⇒
b
=
−
6
2
−
9
2
=
−
15
2
⇒
y
=
3
2
x
−
15
2
←
equation of perpendicular line
Answer:
3 hours and 45 minutes
Step-by-step explanation:
190/55=3.4545
Answer:
1.50
Step-by-step explanation:
7.5 is <em>1.5</em><em> </em><em>x</em><em> </em>5 so, 1 x 1.5 = 1.5
At first he had 72 then he gave 27 to his neighbor ( 27 subtract 72 = 45) and then he gave 15 to his brother ( 45 subtract 15 = 30)
he had 30 tomatoes left.