1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ad-work [718]
3 years ago
15

What contributions did J.J. Thomson make to atomic history?

Physics
1 answer:
luda_lava [24]3 years ago
4 0
J.J. Thomson discovered electrons and noticed that an atom can be divided. Also, he concluded atoms are made of positive cores and negatively charged particles within it.
You might be interested in
A train travels at a speed of 30 m/s. The train starts at an initial position of 1000 meters and travels for 30 seconds. What is
pychu [463]
1000 + 30x30 = 1900. Hope that helps
6 0
3 years ago
You add 500 mL of water at 10°C to 100 mL of water at 70°C. What is the
Sphinxa [80]

Answer:

Option (c) : 20°C

Explanation:

t(final) =  \frac{w1 \times t1 + w2 \times t2}{w1 + w2}

T(final) = 500* 10 + 100*70/600 = 20°C

4 0
3 years ago
I NEED HELP PLEASE, THANKS! :)
mrs_skeptik [129]

Answer:

1. Largest force: C;  smallest force: B; 2. ratio = 9:1

Explanation:

The formula for the force exerted between two charges is

F=K\dfrac{ q_{1}q_{2}}{r^{2}}

where K is the Coulomb constant.

q₁ and q₂ are also identical and constant, so Kq₁q₂ is also constant.

For simplicity, let's combine Kq₁q₂ into a single constant, k.

Then, we can write  

F=\dfrac{k}{r^{2}}

1. Net force on each particle

Let's

  • Call the distance between adjacent charges d.
  • Remember that like charges repel and unlike charges attract.

Define forces exerted to the right as positive and those to the left as negative.

(a) Force on A

\begin{array}{rcl}F_{A} & = & F_{B} + F_{C} + F_{D}\\& = & -\dfrac{k}{d^{2}}  - \dfrac{k}{(2d)^{2}}  +\dfrac{k}{(3d)^{2}}\\& = & \dfrac{k}{d^{2}}\left(-1 - \dfrac{1}{4} + \dfrac{1}{9} \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{-36 - 9 + 4}{36} \right)\\\\& = & \mathbf{-\dfrac{41}{36} \dfrac{k}{d^{2}}}\\\\\end{array}

(b) Force on B

\begin{array}{rcl}F_{B} & = & F_{A} + F_{C} + F_{D}\\& = & \dfrac{k}{d^{2}}  - \dfrac{k}{d^{2}}  + \dfrac{k}{(2d)^{2}}\\& = & \dfrac{k}{d^{2}}\left(\dfrac{1}{4} \right)\\\\& = &\mathbf{\dfrac{1}{4} \dfrac{k}{d^{2}}}\\\\\end{array}

(C) Force on C

\begin{array}{rcl}F_{C} & = & F_{A} + F_{B} + F_{D}\\& = & \dfrac{k}{(2d)^{2}} + \dfrac{k}{d^{2}}  + \dfrac{k}{d^{2}}\\& = & \dfrac{k}{d^{2}}\left( \dfrac{1}{4} +1 + 1 \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{1 + 4 + 4}{4} \right)\\\\& = & \mathbf{\dfrac{9}{4} \dfrac{k}{d^{2}}}\\\\\end{array}

(d) Force on D

\begin{array}{rcl}F_{D} & = & F_{A} + F_{B} + F_{C}\\& = & -\dfrac{k}{(3d)^{2}}  - \dfrac{k}{(2d)^{2}}  - \dfrac{k}{d^{2}}\\& = & \dfrac{k}{d^{2}}\left( -\dfrac{1}{9} - \dfrac{1}{4} -1 \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{-4 - 9 -36}{36} \right)\\\\& = & \mathbf{-\dfrac{49}{36} \dfrac{k}{d^{2}}}\\\\\end{array}

(e) Relative net forces

In comparing net forces, we are interested in their magnitude, not their direction (sign), so we use their absolute values.

F_{A} : F_{B} : F_{C} : F_{D}  =  \dfrac{41}{36} : \dfrac{1}{4} : \dfrac{9}{4} : \dfrac{49}{36}\ = 41 : 9 : 81 : 49\\\\\text{C experiences the largest net force.}\\\text{B experiences the smallest net force.}\\

2. Ratio of largest force to smallest

\dfrac{ F_{C}}{ F_{B}} = \dfrac{81}{9} = \mathbf{9:1}\\\\\text{The ratio of the largest force to the smallest is $\large \boxed{\mathbf{9:1}}$}

7 0
3 years ago
A student wants to create a 6.0V DC battery from a 1.5V DC battery. Can this be done using a transformer alone
shusha [124]

Answer:

Therefore, we need an invert, and a rectifier, along with the transformer to do the job.

Explanation:

A transformer, alone, can not be used to convert a DC voltage to another DC voltage. If we apply a DC voltage to the primary coil of the transformer, it will act as short circuit due to low resistance. It will cause overflow of current through winding, resulting in overheating pf the transformer.

Hence, the transformer only take AC voltage as an input, and converts it to another AC voltage. So, the output voltage of a transformer is also AC voltage.

So, in order to convert a 6 V DC to 1.5 V DC we need an inverter to convert 6 V DC to AC, then a step down transformer to convert it to 1.5 V AC, and finally a rectifier to convert 1.5 V AC to 1.5 V DC.

<u>Therefore, we need an invert, and a rectifier, along with the transformer to do the job.</u>

8 0
3 years ago
A plastic rod 1.3 m long is rubbed all over with wool, and acquires a charge of -3e-08 coulombs. we choose the center of the rod
Anestetic [448]
(a) The plastic rod has a length of L=1.3m. If we divide by 8, we get the length of each piece:
L/8=1.3m/8=0.1625 m

(b) The center of the rod is located at x=0. This means we have 4 pieces of the rod on the negative side of x-axis, and 4 pieces on the positive side. So, starting from x=0 and going towards positive direction, we have: piece 5, piece 6, piece 7 and piece 8. Each piece is 0.1625 m long. Therefore, the center of piece 5 is at 0.1625m/2=0.0812 m. And the center of piece 6 will be shifted by 0.1625m with respect to this:
c_6 = 0.0812m+0.1625m=0.2437 m

(c) The total charge is Q=-3 \cdot 10^{-8}C. To get the charge on each piece, we should divide this value by 8, the number of pieces:
Q/8=-3\cdot 10^{-8}C/8=-3.75\cdot 10^{-9}C

(d) We have to calculate the electric field at x=0.7 generated by piece 6. The charge on piece 6 is the value calculated at point (c):
q= -3.75\cdot 10^{-9}C
If we approximate piece 6 as a single  charge, the electric field is given by
E=k_e  \frac{q}{d^2}
where k_e=8.99\cdot 10^9Nm^2C^{-2} and d is the distance between the charge (center of piece 6, located at 0.2437m) and point a (located at x=0.7m). Therefore we have
E= 8.99\cdot 10^9 Nm^2C^{-2} \frac{-3.75\cdot 10^9 C}{(0.2437m-0.7m)^2} =-161.9 V/m
poiting towards the center of piece 6, since the charge is negative.

(e) missing details on this question.
5 0
3 years ago
Other questions:
  • What will happen to the speed of an object if the net force is in the direction of the motion?
    8·2 answers
  • A mass resting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. It ta
    14·1 answer
  • The following letter are used to help remember the characteristics of minerals:S I C C N. What does the S stand for?
    6·1 answer
  • Describe how the number of photoelectrons emitted from a metal plate in the photoelectric effect would change if the following o
    10·1 answer
  • If there are 6 coulombs of charge moving through a wire in 2 seconds. How many amps are moving through this wire?
    14·1 answer
  • Three 5 Ohm resistors are connected in series to a 10 Volt power supply. What is the current through each resistor?​
    10·1 answer
  • 8. A crate of bananas weighing 3000 N is shipped from South America to New York, where it
    13·1 answer
  • In this photograph, a soccer player is about to kick the ball. Use the situation to explain that when two objects interact, the
    12·1 answer
  • Which equation correctly relates mechanical energy, thermal energy, and total
    15·1 answer
  • A transverse wave on a string is described by the wave functiony(x, t) = 0.350 sin (1.25x + 99.6t)where x and y are in meters an
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!