Answer:
The mass density of the string is (0.3/L)kg/m
Explanation:
Mass density of the string = Mass/Length
Mass = 0.3kg
The length of the string is unknown so it is assumed to be L meter(s)
Therefore, mass deny of the string = 0.3kg/Lm = (0.3/L)kg/m
Well we can always smell things like if food smells bad or if we smell something we have to know whether that smell is good or bad. You could be able to smell animals that are dangerous. Or animal droppings, to know what animal it is if you are in danger.
Answer:
0.0613°C
Explanation:
the given parameters are m=15gm=15×10⁻³ V₁=865m/s V₂=534m/s
the bullet moves with different kinetic energies before and after the penetration, therefore
Kinetic energy before - kinetic energy after = 1/2 × m × ( V₁² - V₂²)
=
× 15×10⁻³ × (865² - 534²)
= 3.47 × 10⁻³J
this loss in energy is transferred to the water, therefore
change in temperature = 
where c = heat capacity of water = 4.19 x 10^3
m = mass of water = 13.5 kg
= {3.47 × 10⁻³} / {13.5 x 4.19 x 10^3 }
=0.0613°C
Pretty sure it’s Force*Distance*Cos(theta)