Answer:
If an object pushes out an amount of water equal to its own weight, the upward force acting on it will be equal to gravity - and the object will float.
Explanation:
The buoyant force has an impact on the object in the water and equals the weight of the water displaced by the object. Every object placed in water has some buoyancy force that pushes it against the gravitational force, and this means that any object loses weight in the water.
The force required to pull the two hemispheres apart is 4.2×10⁴ N and 29 number of horses are needed to pull these hemispheres apart.
<h3>What's the expression of force in terms of pressure?</h3>
- Mathematically, force = pressure/area
- Total area of the two hemispheres = 4π×(0.43)²= 2.3 m²
- Total pressure on the hemispheres= 15 milibar (directed inward) + 940 milibar (atmospheric pressure) = 955 milibar
=955×100 N/m²= 9.55×10⁴ N/m²
- Force on the hemispheres= 9.55×10⁴/2.3 = 4.2×10⁴ N
<h3>What's the minimum number of horses required to get 4.2×10⁴ N of force, if each horse can pull with a force of 1450N?</h3>
No. of horses required to separate the hemispheres = 4.2×10⁴/1450 = 29
Thus, we can conclude that the 29 horses are needed to pull the two hemispheres with a force of 4.2×10⁴ N.
Learn more about the pressure and force here:
brainly.com/question/8033367
#SPJ1
A thermos as another name - it's called the vacuum flask. It's used for<span> storing cryogens when it has certain boiling points that are much lower than the actual room temperature. Many people use thermoses as a cup for drinking, specifically coffee, teas, and other hot drinks.
</span>
<span />
Conservation of momentum: total momentum before = total momentum after
Momentum = mass x velocity
So before the collision:
4kg x 8m/s = 32
1kg x 0m/s = 0
32+0=32
Therefore after the collision
4kg x 4.8m/s = 19.2
1kg x βm/s = β
19.2 + β = 32
Therefore β = 12.8 m/s
Answer:
<em>The direction of the magnetic field on point P, equidistant from both wires, and having equal magnitude of current flowing through them will be pointed perpendicularly away from the direction of the wires.</em>
Explanation:
Using the right hand grip, the direction of the magnet field on the wire M is counterclockwise, and the direction of the magnetic field on wire N is clockwise. Using this ideas, we can see that the magnetic flux of both field due to the currents of the same magnitude through both wires, acting on a particle P equidistant from both wires will act in a direction perpendicularly away from both wires.