Answer:
b) q large and m small
Explanation:
q is large and m is small
We'll express it as :
q > m
As we know the formula:
F = Eq
And we also know that :
F = Bqv
F = 
Bqv = 
or Eq = 
Assume that you want a velocity selector that will allow particles of velocity v⃗ to pass straight through without deflection while also providing the best possible velocity resolution. You set the electric and magnetic fields to select the velocity v⃗ . To obtain the best possible velocity resolution (the narrowest distribution of velocities of the transmitted particles) you would want to use particles with q large and m small.
For rotational equilibrium of the door we can say that torque due to weight of the door must be counter balanced by the torque of external force

here weight will act at mid point of door so its distance is half of the total distance where force is applied
here we know that

now we will have


so our applied force is 72.5 N
If the resistor is in series with the rest of the circuit then a is the correct answer. The voltage across the resistor in series with another resistor is

where R is the big resistor and r is the small one and V is the total voltage drop across both. This is called a voltage divider
Answer:
the friction force in the reverse direction is 200 *0.4=80 N.
the net forward force acting on the box is therefore
Fnet= 100 - 80 N
= 20 N
acceleration = Fnet / mass
=Fnet *g/(weight)
=20 *9.8/200 = 0.98 m/s^2
Explanation:
Answer:
A. carbon and boron
Explanation:
Carbon and boron is not an alloy.
An allow forms between metals and metals using their huge electron could.
Carbon is a non-metal, boron is a also a non-metal
Two non-metals combining together does not make an alloy.
Iron, nickel, aluminum are all metals.