1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natalka [10]
3 years ago
8

The charge within a small volume dv is dq=ρdv. the integral of ρdv over a cylinder of length l is the total charge q=λl within t

he cylinder. use this fact to to determine the constant ρ0 in terms of λ and r. hint: let dv be a cylindrical shell of length l, radius r, and thickness dr. what is the volume of such a shell?

Physics
2 answers:
azamat3 years ago
7 0
The volume of the shell that you described would be:
dV=2L\pi r dr
Now we can rewrite the given integral:
\lambda L=\int\rho dV=L\rho\int2\pi r dr \\ \lambda L =L\rho \pi r^2\\ \rho=\frac{\lambda}{\pi r^2}
I have attached the picture explaining how we got the formula for the volume.
On the picture, I marked the rectangle. You can of this rectangle as the base, and the height would be the circumference of the cylinder.

Step2247 [10]3 years ago
6 0

Answer:

Given

dq=density*dv

q=lamda*I

Taking double integration

density=lamda/2*pi*r^2

You might be interested in
How far will a bird have traveled in 13 seconds if it maintains a speed of 31 m/s
BARSIC [14]

Distance = Speed × time

Distance = 31m/s × 13 seconds = 403m

8 0
3 years ago
Drag the tiles to the boxes to form correct pairs. Match each hypothesis for how the Moon formed with the statement that best de
Roman55 [17]

Answer:

giant impact theory

Explanation:

i don't know  im just guessing

3 0
3 years ago
A 1400-kg car is moving at a speed of 35 m/s. How much kinetic energy does the car have (in Joules)?
Gekata [30.6K]

Answer:

857.5Kjoules

Explanation:

Using K. E=1/2 Mv^2

=1/2x1400x35x35

=857500joules

=857.5KJ

3 0
3 years ago
Apollo astronauts took a "nine iron" to the Moon and hit a golf ball about 180 m.
Studentka2010 [4]
So in calculating this one its is really hard to explain how i get it on solve it but you must consider this factors that i give in getting the answer. First is the distance cover by the ball when it is hit by the club, Second is you must estimate both of those data when it is in the moon and in the earth whre the gravity of the earth is 9.8m/s^2 so by calculating the Gravity of the moon or gMoon is equal 1.74m/s^2
7 0
3 years ago
Read 2 more answers
An object with mass 100 kg moved in outer space. When it was at location <8, -30, -4> its speed was 5.5 m/s. A single cons
Alenkasestr [34]

Answer:

v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

Explanation:

We can solve this problem using the kinematic relations, we have a three-dimensional movement, but we can work as three one-dimensional movements where the only parameter in common is time (a scalar).

X axis.

They indicate the initial position x = 8 m, its initial velocity v₀ = 5.5 m / s, the force Fx₁ = 220 N x₁ = 14 m, now the force changes to Fx₂ = 100 N up to the point xf = 17 m. The final speed is wondered.

As this movement is in three dimensions we must find the projection of the initial velocity in each axis, for this we can use trigonometry

the angle fi is with respect to the in z and the angle theta with respect to the x axis.

               sin φ = z / r

                Cos φ = r_p / r

               z = r sin φ

               r_p = r cos φ

the modulus of the vector r can be found with the Pythagorean theorem

               r² = (x-x₀) ² + (y-y₀) ² + (z-z₀) ²

               r² = (14-8) 2 + (-21 + 30) 2+ (-7 +4) 2

               r = √126

               r = 11.23 m

Let's find the angle with respect to the z axis (φfi)

                φ = sin⁻¹ z / r

                φ = sin⁻¹ ( \frac{-7+4}{11.23} )

                φ = 15.5º

Let's find the projection of the position vector (r_p)

                r_p = r cos φ

                r_p = 11.23 cos 15.5

                r_p = 10.82 m

This vector is in the xy plane, so we can use trigonometry to find the angle with respect to the x axis.

                 cos θ = x / r_p

                 θ = cos⁻¹ x / r_p

                 θ = cos⁻¹ ( \frac{14-8}{10.82})  

                 θ = 56.3º

taking the angles we can decompose the initial velocity.

               sin φ = v_z / v₀

               cos φ = v_p / v₀

               v_z = v₀ sin φ

               v_z = 5.5 sin 15.5 = 1.47 m / z

               v_p = vo cos φ

               v_p = 5.5 cos 15.5 = 5.30 m / s

                 

               cos θ = vₓ / v_p

                sin θ = v_y / v_p

                vₓ = v_p cos θ

                v_y = v_p sin θ

                vₓ = 5.30 cos 56.3 = 2.94 m / s

                v_y = 5.30 sin 56.3 = 4.41 m / s

 

                 

we already have the components of the initial velocity

                v₀ = (2.94 i ^ + 4.41 j ^ + 1.47 k ^) m / s

let's find the acceleration on this axis (ax1) using Newton's second law

                Fₓx = m aₓ₁

                aₓ₁ = Fₓ / m

                aₓ₁ = 220/100

                aₓ₁ = 2.20 m / s²

Let's look for the velocity at the end of this interval (vx1)

Let's be careful if the initial velocity and they relate it has the same sense it must be added, but if the velocity and acceleration have the opposite direction it must be subtracted.

                 vₓ₁² = v₀ₓ² + 2 aₓ₁ (x₁-x₀)

                 

let's calculate

                 vₓ₁² = 2.94² + 2 2.20 (14-8)

                 vₓ₁ = √35.04

                 vₓ₁ = 5.92 m / s

to the second interval

they relate it to xf

                   aₓ₂ = Fₓ₂ / m

                   aₓ₂ = 100/100

                   aₓ₂ = 1 m / s²

final speed

                    v_{xf}²  = vₓ₁² + 2 aₓ₂ (x_f- x₁)

                    v_{xf}² = 5.92² + 2 1 (17-14)

                    v_{xf} =√41.05

                    v_{xf} = 6.41 m / s

We carry out the same calculation for each of the other axes.

Axis y

acceleration (a_{y1})

                      a_{y1} = F_y / m

                      a_{y1} = 460/100

                      a_[y1} = 4.60 m / s²

the velocity at the end of the interval (v_{y1})

                      v_{y1}² = v_{oy}² + 2 a_{y1{ (y₁ -y₀)

                      v_{y1}2 = 4.41² + 2 4.60 (-21 + 30)

                      v_{y1} = √102.25

                       v_{y1} = 10.11 m / s

second interval

acceleration (a_{y2})

                      a_{y2} = F_{y2} / m

                      a_{y2} = 260/100

                      a_{y2} = 2.60 m / s2

final speed

                     v_{yf}² = v_{y1}² + 2 a_{y2} (y₂ -y₁)

                     v_{yf}² = 10.11² + 2 2.60 (-27 + 21)

                      v_{yf} = √ 71.01

                      v_{yf} = 8.43 m / s

here there is an inconsistency in the problem if the body is at y₁ = -27m and passes the position y_f = -21 m with the relationship it must be contrary to the velocity

z axis

 

first interval, relate (a_{z1})

                      a_{z1} = F_{z1} / m

                      a_{z1} = -200/100

                      a_{z1} = -2 m / s

the negative sign indicates that the acceleration is the negative direction of the z axis

the speed at the end of the interval

                    v_{z1}² = v_{zo)² + 2 a_{z1} (z₁-z₀)

                    v_{z1}² = 1.47² + 2 (-2) (-7 + 4)

                    v_{z1} = √14.16

                    v_{z1} = -3.76 m / s

second interval, acceleration (a_{z2})

                    a_{z2} = F_{z2} / m

                    a_{z2} = 210/100

                    a_{z2} = 2.10 m / s2

final speed

                    v_{fz}² = v_{z1}² - 2 a_{z2} | z_f-z₁)

                    v_{fz}² = 3.14² - 2 2.10 (-3 + 7)

                     v_{fz} = √6.94

                     v_{fz} = 2.63 m / s

speed is     v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

5 0
3 years ago
Other questions:
  • Sully uses a battery and a coil of wire to create an electromagnet. Using the same materials, if he wants to increase the streng
    9·1 answer
  • Which statement BEST describes the benefits of muscular fitness training?
    5·1 answer
  • rectangular plate, whose streamwise dimension (or chord c) is 0.2 m and whose width (or span b) is 1.8 m, is mounted in a wind t
    15·1 answer
  • Teresa drove to the mountains last weekend. There was heavy traffic on the way there, and the trip took hours. When Teresa drove
    13·2 answers
  • A 900 kg steel beam is supported by the two ropes shown in (Figure 1) . Calculate the tension in the rope.
    15·1 answer
  • Dont know whether its b or c. (cuz for sure it transports energy)
    15·1 answer
  • You wish to make a simple amusement park ride in which a steel-wheeled roller-coaster car travels down one long slope, where rol
    15·1 answer
  • In the laboratory you will find three bottles with the following labels:
    12·1 answer
  • How many newtons of force
    10·1 answer
  • What are you and the Australian Institute of Marine Biology trying to find out and 4. Why might it be important to find this inf
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!